The galaxy–halo connection in the VIDEO survey at 0.5 < z < 1.7

We present a series of results from a clustering analysis of the first data release of the Visible and Infrared Survey Telescope for Astronomy (VISTA) Deep Extragalactic Observations (VIDEO) survey. VIDEO is the only survey currently capable of probing the bulk of stellar mass in galaxies at redshifts corresponding to the peak of star formation on degree scales. Galaxy clustering is measured with the two-point correlation function, which is calculated using a non-parametric kernel-based density estimator. We use our measurements to investigate the connection between the galaxies and the host dark matter halo using a halo occupation distribution methodology, deriving bias, satellite fractions, and typical host halo masses for stellar masses between 10 9.35 and 10 10.85 M ⊙ , at redshifts 0.5 < z < 1.7. Our results show typical halo mass increasing with stellar mass (with moderate scatter) and bias increasing with stellar mass and redshift consistent with previous studies. We find that the satellite fraction increased towards low redshifts, from ~5 per cent at z ~ 1.5 to ~20 per cent at z ~ 0.6. We combine our results to derive the stellar mass-to-halo mass ratio for both satellites and centrals over a range of halo masses and find the peak corresponding to the halo mass with maximum star formation efficiency to be ~2 × 10 12 M ⊙ , finding no evidence for evolution.

[1]  R. Nichol,et al.  The Intermediate-Scale Clustering of Luminous Red Galaxies , 2004, astro-ph/0411557.

[2]  M. Graham,et al.  A structure in the early Universe at z ∼ 1.3 that exceeds the homogeneity scale of the R-W concordance cosmology , 2012, 1211.6256.

[3]  Ravi Sheth,et al.  Halo Models of Large Scale Structure , 2002, astro-ph/0206508.

[4]  J. Tinker,et al.  THE CONNECTION BETWEEN GALAXIES AND DARK MATTER STRUCTURES IN THE LOCAL UNIVERSE , 2012, 1207.2160.

[5]  R. Wechsler,et al.  Modeling Luminosity-dependent Galaxy Clustering through Cosmic Time , 2005, astro-ph/0512234.

[6]  J. Comparat,et al.  Modelling galaxy clustering: halo occupation distribution versus subhalo matching. , 2015, Monthly notices of the Royal Astronomical Society.

[7]  B. Garilli,et al.  The galaxy-halo connection from a joint lensing, clustering and abundance analysis in the CFHTLenS/VIPERS field , 2015, 1502.02867.

[8]  P. Peebles,et al.  The Large-Scale Structure of the Universe , 1980 .

[9]  P. W. Wang,et al.  The VIMOS Ultra-Deep Survey: ~10 000 galaxies with spectroscopic redshifts to study galaxy assembly at early epochs 2 < z ≃ 6 , 2014, 1403.3938.

[10]  M. Jarvis,et al.  The evolving relation between star-formation rate and stellar mass in the VIDEO Survey since z=3 , 2015, 1507.07503.

[11]  Henry C. Ferguson,et al.  CANDELS: THE CORRELATION BETWEEN GALAXY MORPHOLOGY AND STAR FORMATION ACTIVITY AT z ∼ 2 , 2013, 1306.4980.

[12]  Sergey E. Koposov,et al.  Combining Dark Energy Survey Science Verification data with near-infrared data from the ESO VISTA Hemisphere Survey , 2014, 1407.3801.

[13]  G. Kauffmann,et al.  A Re-examination of Galactic Conformity and a Comparison with Semi-analytic Models of Galaxy Formation , 2012, 1209.3306.

[14]  M. Jarvis,et al.  Radio-quiet quasars in the VIDEO survey: evidence for AGN-powered radio emission at S1.4 GHz < 1 mJy , 2014, 1410.3892.

[15]  Y. Mellier,et al.  UltraVISTA: a new ultra-deep near-infrared survey in COSMOS , 2012, 1204.6586.

[16]  William H. Press,et al.  Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation , 1974 .

[17]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[18]  O. Fèvre,et al.  Probing the galaxy–halo connection in UltraVISTA to z ∼ 2 , 2014, 1411.4983.

[19]  Topology of the Galaxy Distribution in the Hubble Deep Fields , 2000, astro-ph/0008353.

[20]  B. Garilli,et al.  MASS AND ENVIRONMENT AS DRIVERS OF GALAXY EVOLUTION IN SDSS AND zCOSMOS AND THE ORIGIN OF THE SCHECHTER FUNCTION , 2010, 1003.4747.

[21]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[22]  M. Rosenblatt Remarks on Some Nonparametric Estimates of a Density Function , 1956 .

[23]  Phillip James Edwin Peebles,et al.  Statistical analysis of catalogs of extragalactic objects. VII. Two- and three-point correlation functions for the high-resolution Shane-Wirtanen catalog of galaxies , 1977 .

[24]  Simon D. M. White,et al.  The hierarchy of correlation functions and its relation to other measures of galaxy clustering , 1979 .

[25]  Theoretical Models of the Halo Occupation Distribution: Separating Central and Satellite Galaxies , 2004, astro-ph/0408564.

[26]  A. Szalay,et al.  Bias and variance of angular correlation functions , 1993 .

[27]  L. Moscardini,et al.  Measuring the Redshift Evolution of Clustering: the Hubble Deep Field South , 2002 .

[28]  M. Sgr'o,et al.  Taking advantage of photometric galaxy catalogues to determine the halo occupation distribution , 2015, 1508.02346.

[29]  M. Way,et al.  Local starburst galaxies and their descendants. Statistics from the Sloan Digital Sky Survey , 2015, 1501.06928.

[30]  S. Gwyn,et al.  THE CANADA–FRANCE–HAWAII TELESCOPE LEGACY SURVEY: STACKED IMAGES AND CATALOGS , 2012 .

[31]  Michael S. Warren,et al.  THE LARGE-SCALE BIAS OF DARK MATTER HALOS: NUMERICAL CALIBRATION AND MODEL TESTS , 2010, 1001.3162.

[32]  The angular correlation function and hierarchical moments of ∼70 000 faint galaxies to R=23.5 , 1998, astro-ph/9803331.

[33]  A. Dressler Galaxy morphology in rich clusters: Implications for the formation and evolution of galaxies , 1980 .

[34]  C. Lintott,et al.  Galaxy Zoo 2: detailed morphological classifications for 304,122 galaxies from the Sloan Digital Sky Survey , 2013, 1308.3496.

[35]  Y. Mellier,et al.  Galaxy clustering in the CFHTLS-Wide: the changing relationship between galaxies and haloes since z ~ 1.2 , 2011, 1107.0616.

[36]  Galaxy occupation statistics of dark matter haloes: observational results , 2004, astro-ph/0410114.

[37]  M. Stiavelli,et al.  Cosmic Variance and Its Effect on the Luminosity Function Determination in Deep High-z Surveys , 2007, 0712.0398.

[38]  Ravi K. Sheth Giuseppe Tormen Large scale bias and the peak background split , 1999 .

[39]  Szalay,et al.  A Comparison of Estimators for the Two-Point Correlation Function. , 1999, The Astrophysical journal.

[40]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[41]  Daniel J. B. Smith,et al.  The likelihood ratio as a tool for radio continuum surveys with Square Kilometre Array precursor telescopes , 2012, 1202.1958.

[42]  J. Brinchmann,et al.  The VIMOS-VLT Deep Survey: evolution in the halo occupation number since z∼ 1★ , 2010, 1003.6129.

[43]  L. Moscardini,et al.  Measuring and modelling the redshift evolution of clustering: the Hubble Deep Field North , 1999, astro-ph/9902290.

[44]  P. W. Wang,et al.  Evolution of clustering length, large-scale bias, and host halo mass at 2 , 2014, 1411.5688.

[45]  Neta A. Bahcall,et al.  The Spatial correlation function of RICH clusters of galaxies , 1983 .

[46]  B. Garilli,et al.  Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey , 2006, astro-ph/0603217.

[47]  Y. Mellier,et al.  The WIRCam Deep Survey - II. Mass selected clustering , 2013, 1310.2172.

[48]  Potsdam,et al.  The Dark Side of the Halo Occupation Distribution , 2003, astro-ph/0308519.

[49]  Andrew P. Hearin,et al.  On the Physical Origin of Galactic Conformity , 2015, 1504.05578.

[50]  M. Fukugita,et al.  The Cosmic Energy Inventory , 2004, astro-ph/0406095.

[51]  D. Nelson Limber,et al.  The Analysis of Counts of the Extragalactic Nebulae in Terms of a Fluctuating Density Field. II , 1953 .

[52]  Clustering in the 1.2-Jy IRAS Galaxy Redshift Survey – I. The redshift and real space correlation functions , 1993, astro-ph/9307001.

[53]  H. Mo,et al.  Properties of galaxy groups in the Sloan Digital Sky Survey – I. The dependence of colour, star formation and morphology on halo mass , 2005, astro-ph/0509147.

[54]  Simon Prunet,et al.  Dancing in the dark: galactic properties trace spin swings along the cosmic web , 2014, 1402.1165.

[55]  A. Mazure,et al.  The VIMOS VLT Deep Survey final data release: a spectroscopic sample of 35 016 galaxies and AGN out to z ~ 6.7 selected with 17.5 ≤ iAB ≤ 24.75 , 2013, 1307.0545.

[56]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[57]  S. Dye,et al.  Galaxy And Mass Assembly (GAMA): the input catalogue and star–galaxy separation , 2009, 0910.5120.

[58]  Princeton University,et al.  The Non-Parametric Model for Linking Galaxy Luminosity with Halo/Subhalo Mass: Are First Brightest Galaxies Special? , 2005, astro-ph/0701096.

[59]  F. V. D. Bosch,et al.  Constraining galaxy formation and cosmology with the conditional luminosity function of galaxies , 2002, astro-ph/0207019.

[60]  Modelling galaxy clustering in a high-resolution simulation of structure formation , 2006, astro-ph/0603546.

[61]  C. Conselice,et al.  Studying the emergence of the red sequence through galaxy clustering: host halo masses at z > 2 , 2013, 1303.0816.

[62]  B. Garilli,et al.  The zCOSMOS Survey. The dependence of clustering on luminosity and stellar mass at z=0.2-1 , 2009, 0906.1807.

[63]  R. Nichol,et al.  GALAXY CLUSTERING IN THE COMPLETED SDSS REDSHIFT SURVEY: THE DEPENDENCE ON COLOR AND LUMINOSITY , 2010, 1005.2413.

[64]  C. Frenk,et al.  Uncertainties in the cluster-cluster correlation function. , 1986 .

[65]  S. Bamford,et al.  Galaxy and Mass Assembly (GAMA): survey diagnostics and core data release , 2010, 1009.0614.

[66]  Marc Davis,et al.  A survey of galaxy redshifts. V. The two-point position and velocity correlations. , 1983 .

[67]  Andrew C. Fabian,et al.  Observational Evidence of Active Galactic Nuclei Feedback , 2012 .

[68]  M. Dickinson,et al.  Cosmic Star-Formation History , 1996, 1403.0007.

[69]  M. Sullivan,et al.  The VISTA deep extragalactic observations (VIDEO) survey , 2012, 1206.4263.

[70]  A. Bowman An alternative method of cross-validation for the smoothing of density estimates , 1984 .

[71]  S. E. Persson,et al.  GALAXY STELLAR MASS FUNCTIONS FROM ZFOURGE/CANDELS: AN EXCESS OF LOW-MASS GALAXIES SINCE z = 2 AND THE RAPID BUILDUP OF QUIESCENT GALAXIES , 2013, 1309.5972.

[72]  J. B. Oke,et al.  Secondary standard stars for absolute spectrophotometry , 1983 .

[73]  G. Burbidge,et al.  Annual review of astronomy and astrophysics. Volume 17 , 1987 .

[74]  The Cosmic Evolution Survey (COSMOS): The Morphological Content and Environmental Dependence of the Galaxy Color-Magnitude Relation at z ~ 0.7 , 2007, astro-ph/0701483.

[75]  Matthew Colless,et al.  The 6dF Galaxy Survey: baryon acoustic oscillations and the local Hubble constant , 2011, 1106.3366.

[76]  Risa H. Wechsler,et al.  The Physics of Galaxy Clustering. I. A Model for Subhalo Populations , 2005 .

[77]  Sam N. Lindsay,et al.  Evolution in the bias of faint radio sources to z 2.2 , 2014, 1403.0882.

[78]  P. Schneider,et al.  Relative clustering and the joint halo occupation distribution of red sequence and blue-cloud galaxies in COMBO-17 , 2008, 0805.3459.

[79]  Michael S. Warren,et al.  Precision Determination of the Mass Function of Dark Matter Halos , 2005, astro-ph/0506395.

[80]  DARK MATTER HALOS IN GALAXIES AND GLOBULAR CLUSTER POPULATIONS , 2014, 1404.1920.

[81]  S. More,et al.  Cosmological constraints from a combination of galaxy clustering and lensing – I. Theoretical framework , 2012, 1206.6890.

[82]  S. Gwyn,et al.  The CFHT Legacy Survey: stacked images and catalogs , 2011, 1101.1084.

[83]  Gavin Dalton,et al.  A measurement of the cosmological mass density from clustering in the 2dF Galaxy Redshift Survey , 2001, Nature.