Polynomial primal-dual cone affine scaling for semidefinite programming

[1]  G. Kalchenko,et al.  SOLUTION OF A NONLINEAR PROGRAMMING PROBLEM , 1968 .

[2]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[3]  Earl R. Barnes,et al.  A variation on Karmarkar’s algorithm for solving linear programming problems , 1986, Math. Program..

[4]  I. I. Dikin Letter to the editor , 1988, Math. Program..

[5]  Clóvis C. Gonzaga,et al.  Conical projection algorithms for linear programming , 1989, Math. Program..

[6]  Mauricio G. C. Resende,et al.  A Polynomial-Time Primal-Dual Affine Scaling Algorithm for Linear and Convex Quadratic Programming and Its Power Series Extension , 1990, Math. Oper. Res..

[7]  Shu-Cherng Fang,et al.  A new variant of the primal affine scaling algorithm for linear programs , 1991 .

[8]  Donald Goldfarb,et al.  A primal projective interior point method for linear programming , 1991, Math. Program..

[9]  R. Vanderbei,et al.  An Interior-point Method for Semideenite Programming an Interior-point Method for Semideenite Programming , 1994 .

[10]  F. Potra,et al.  Homogeneous Interior{point Algorithms for Semideenite Programming , 1995 .

[11]  R. Saigal,et al.  An Infeasible Start Predictor Corrector Method for Semi-deenite Linear Programming , 1995 .

[12]  Shinji Hara,et al.  Interior Point Methods for the Monotone Linear Complementarity Problem in Symmetric Matrices , 1995 .

[13]  Shuzhong Zhang,et al.  Symmetric primal-dual path-following algorithms for semidefinite programming , 1999 .

[14]  Farid Alizadeh,et al.  Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..

[15]  Robert J. Vanderbei,et al.  An Interior-Point Method for Semidefinite Programming , 1996, SIAM J. Optim..

[16]  Shuzhong Zhang,et al.  An O(root(n)L) iteration bound primal-dual cone affine scaling algorithm for linear programming , 1996, Math. Program..

[17]  Tamás Terlaky,et al.  A Polynomial Primal-Dual Dikin-Type Algorithm for Linear Programming , 1996, Math. Oper. Res..

[18]  Yinyu Ye,et al.  Improved complexity using higher-order correctors for primal-dual Dikin affine scaling Report , 1994 .

[19]  Shuzhong Zhang,et al.  ON WEIGHTED CENTERS FOR SEMIDEFINITE PROGRAMMINGJos , 1996 .

[20]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[21]  Michael J. Todd,et al.  Self-Scaled Barriers and Interior-Point Methods for Convex Programming , 1997, Math. Oper. Res..

[22]  Benjamin Jansen,et al.  Interior Point Techniques in Optimization , 1997 .

[23]  Renato D. C. Monteiro,et al.  Primal-Dual Path-Following Algorithms for Semidefinite Programming , 1997, SIAM J. Optim..

[24]  R. Vanderbei Primal-dual Aane-scaling Algorithms Fail for Semideenite Programming , 1997 .

[25]  Shinji Hara,et al.  Interior-Point Methods for the Monotone Semidefinite Linear Complementarity Problem in Symmetric Matrices , 1997, SIAM J. Optim..

[26]  Michael L. Overton,et al.  Primal-Dual Interior-Point Methods for Semidefinite Programming: Convergence Rates, Stability and Numerical Results , 1998, SIAM J. Optim..

[27]  Michael J. Todd,et al.  Primal-Dual Interior-Point Methods for Self-Scaled Cones , 1998, SIAM J. Optim..

[28]  Etienne de Klerk,et al.  Polynomial Primal-Dual Affine Scaling Algorithms in Semidefinite Programming , 1998, J. Comb. Optim..

[29]  Yin Zhang,et al.  On Extending Some Primal-Dual Interior-Point Algorithms From Linear Programming to Semidefinite Programming , 1998, SIAM J. Optim..

[30]  Masakazu Muramatsu Affine scaling algorithm fails for semidefinite programming , 1998, Math. Program..

[31]  F. Potra,et al.  On homogeneous interrior-point algorithms for semidefinite programming , 1998 .

[32]  Florian A. Potra,et al.  A Superlinearly Convergent Primal-Dual Infeasible-Interior-Point Algorithm for Semidefinite Programming , 1998, SIAM J. Optim..

[33]  Kim-Chuan Toh,et al.  On the Nesterov-Todd Direction in Semidefinite Programming , 1998, SIAM J. Optim..

[34]  appear in SIAM Journal on Optimization. , .