Accurately Determining the Phase Transition Temperature of CsPbI3 via Random-Phase Approximation Calculations and Phase-Transferable Machine Learning Potentials

[1]  I. Gates,et al.  Exploring the Effects of Ionic Defects on the Stability of CsPbI3 with a Deep Learning Potential. , 2022, Chemphyschem : a European journal of chemical physics and physical chemistry.

[2]  W. Goddard,et al.  First-Principles Molecular Dynamics in Metal-Halide Perovskites: Contrasting Generalized Gradient Approximation and Hybrid Functionals. , 2021, The journal of physical chemistry letters.

[3]  Hong Gu,et al.  Significant phonon anharmonicity drives phase transitions in CsPbI3 , 2021, Applied Physics Letters.

[4]  J. Sauer,et al.  Chemically Accurate Vibrational Free Energies of Adsorption from Density Functional Theory Molecular Dynamics: Alkanes in Zeolites , 2021, Journal of chemical theory and computation.

[5]  Alán Aspuru-Guzik,et al.  Machine-learned potentials for next-generation matter simulations , 2021, Nature Materials.

[6]  Juan‐Pablo Correa‐Baena,et al.  Structural Stability of Formamidinium- and Cesium-Based Halide Perovskites , 2021 .

[7]  Yue Hu,et al.  Two-dimensional Ruddlesden–Popper layered perovskite solar cells based on phase-pure thin films , 2020 .

[8]  M. Roeffaers,et al.  Texture Formation in Polycrystalline Thin Films of All‐Inorganic Lead Halide Perovskite , 2020, Advanced materials.

[9]  M. Bonn,et al.  Tuning the Structural and Optoelectronic Properties of Cs2AgBiBr6 Double‐Perovskite Single Crystals through Alkali‐Metal Substitution , 2020, Advanced materials.

[10]  H. Jung,et al.  High-Efficiency Perovskite Solar Cells. , 2020, Chemical reviews.

[11]  I. Tranca,et al.  Atomistic and Electronic Origin of Phase Instability of Metal Halide Perovskites , 2020 .

[12]  A. Shapeev,et al.  Lattice dynamics simulation using machine learning interatomic potentials , 2020 .

[13]  William W. Yu,et al.  Ruddlesden–Popper Perovskites: Synthesis and Optical Properties for Optoelectronic Applications , 2019, Advanced science.

[14]  Bin Wang,et al.  Energetics, structures, and phase transitions of cubic and orthorhombic cesium lead iodide (CsPbI3) polymorphs. , 2019, Journal of the American Chemical Society.

[15]  M. Roeffaers,et al.  Thermal unequilibrium of strained black CsPbI3 thin films , 2019, Science.

[16]  Hsin-An Chen,et al.  Fast and Accurate Artificial Neural Network Potential Model for MAPbI3 Perovskite Materials , 2019, ACS omega.

[17]  Jörg Neugebauer,et al.  pyiron: An integrated development environment for computational materials science , 2019, Computational Materials Science.

[18]  J. Kussmann,et al.  Calculating free energies from the vibrational density of states function: Validation and critical assessment. , 2019, The Journal of chemical physics.

[19]  Liyuan Han,et al.  Efficient and Stable CsPbI3 Solar Cells via Regulating Lattice Distortion with Surface Organic Terminal Groups , 2019, Advanced materials.

[20]  Wen Chen,et al.  Short‐Chain Ligand‐Passivated Stable α‐CsPbI3 Quantum Dot for All‐Inorganic Perovskite Solar Cells , 2019, Advanced Functional Materials.

[21]  A. Walsh,et al.  Vacancy-Driven Stabilization of the Cubic Perovskite Polymorph of CsPbI3 , 2019, The Journal of Physical Chemistry C.

[22]  Rui Wang,et al.  A Review of Perovskites Solar Cell Stability , 2019, Advanced Functional Materials.

[23]  L. Herz,et al.  Structural and Optical Properties of Cs2AgBiBr6 Double Perovskite , 2018, ACS Energy Letters.

[24]  G. Kresse,et al.  Tuning the balance between dispersion and entropy to design temperature-responsive flexible metal-organic frameworks , 2018, Nature Communications.

[25]  K-R Müller,et al.  SchNetPack: A Deep Learning Toolbox For Atomistic Systems. , 2018, Journal of chemical theory and computation.

[26]  P. Korotaev,et al.  Reproducibility of vibrational free energy by different methods , 2018, Computational Materials Science.

[27]  F. Giustino,et al.  Cubic or Orthorhombic? Revealing the Crystal Structure of Metastable Black-Phase CsPbI3 by Theory and Experiment , 2018, ACS Energy Letters.

[28]  William W. Yu,et al.  Spontaneous Silver Doping and Surface Passivation of CsPbI3 Perovskite Active Layer Enable Light-Emitting Devices with an External Quantum Efficiency of 11.2. , 2018, ACS energy letters.

[29]  M. Kanatzidis,et al.  Anharmonicity and Disorder in the Black Phases of Cesium Lead Iodide Used for Stable Inorganic Perovskite Solar Cells. , 2018, ACS nano.

[30]  Longwei Yin,et al.  Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells , 2018, Nature Communications.

[31]  K. Müller,et al.  Towards exact molecular dynamics simulations with machine-learned force fields , 2018, Nature Communications.

[32]  K-R Müller,et al.  SchNet - A deep learning architecture for molecules and materials. , 2017, The Journal of chemical physics.

[33]  A. Pasquarello,et al.  Predictive Determination of Band Gaps of Inorganic Halide Perovskites. , 2017, The journal of physical chemistry letters.

[34]  Sang Yoon Lee,et al.  Printable organometallic perovskite enables large-area, low-dose X-ray imaging , 2017, Nature.

[35]  Heejae Lee,et al.  Structural Instabilities Related to Highly Anharmonic Phonons in Halide Perovskites. , 2017, The journal of physical chemistry letters.

[36]  Sree Ganesh Balasubramani,et al.  Random-Phase Approximation Methods. , 2017, Annual review of physical chemistry.

[37]  J. Spanier,et al.  Quantitative Phase-Change Thermodynamics and Metastability of Perovskite-Phase Cesium Lead Iodide. , 2017, The journal of physical chemistry letters.

[38]  T. Bučko,et al.  A Fractionally Ionic Approach to Polarizability and van der Waals Many-Body Dispersion Calculations. , 2016, Journal of chemical theory and computation.

[39]  Rampi Ramprasad,et al.  Machine Learning Force Fields: Construction, Validation, and Outlook , 2016, 1610.02098.

[40]  M. Kovalenko,et al.  Harnessing Defect-Tolerance at the Nanoscale: Highly Luminescent Lead Halide Perovskite Nanocrystals in Mesoporous Silica Matrixes , 2016, Nano letters.

[41]  Prashant V Kamat,et al.  Intriguing Optoelectronic Properties of Metal Halide Perovskites. , 2016, Chemical reviews.

[42]  Wei Zhang,et al.  Metal halide perovskites for energy applications , 2016, Nature Energy.

[43]  Edward H. Sargent,et al.  Perovskite photonic sources , 2016, Nature Photonics.

[44]  Stefano de Gironcoli,et al.  Reproducibility in density functional theory calculations of solids , 2016, Science.

[45]  Gang Li,et al.  Single Crystal Formamidinium Lead Iodide (FAPbI3): Insight into the Structural, Optical, and Electrical Properties , 2016, Advanced materials.

[46]  T. Bučko,et al.  Many-body dispersion corrections for periodic systems: an efficient reciprocal space implementation , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[47]  J. Klimeš,et al.  Singles correlation energy contributions in solids. , 2015, The Journal of chemical physics.

[48]  P. Delugas,et al.  Methylammonium Rotational Dynamics in Lead Halide Perovskite by Classical Molecular Dynamics: The Role of Temperature , 2015 .

[49]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[50]  Aron Walsh,et al.  Ionic transport in hybrid lead iodide perovskite solar cells , 2015, Nature Communications.

[51]  T. Bein,et al.  Stabilization of the Trigonal High-Temperature Phase of Formamidinium Lead Iodide. , 2015, The journal of physical chemistry letters.

[52]  Jinli Yang,et al.  Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. , 2015, ACS nano.

[53]  A. Walsh Principles of Chemical Bonding and Band Gap Engineering in Hybrid Organic–Inorganic Halide Perovskites , 2015, The journal of physical chemistry. C, Nanomaterials and interfaces.

[54]  Jeffrey A. Christians,et al.  Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. , 2015, Journal of the American Chemical Society.

[55]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[56]  F. Giustino,et al.  Steric engineering of metal-halide perovskites with tunable optical band gaps , 2014, Nature Communications.

[57]  Nam-Gyu Park,et al.  High‐Efficiency Perovskite Solar Cells Based on the Black Polymorph of HC(NH2)2PbI3 , 2014, Advanced materials.

[58]  Georg Kresse,et al.  Low Scaling Algorithms for the Random Phase Approximation: Imaginary Time and Laplace Transformations. , 2014, Journal of chemical theory and computation.

[59]  Paolo Umari,et al.  Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 Perovskites for Solar Cell Applications , 2014, Scientific Reports.

[60]  C Franchini,et al.  The random phase approximation applied to ice. , 2014, The Journal of chemical physics.

[61]  M. Johnston,et al.  Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .

[62]  Alexandre Tkatchenko,et al.  Long-range correlation energy calculated from coupled atomic response functions. , 2013, The Journal of chemical physics.

[63]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[64]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[65]  V. Van Speybroeck,et al.  Error Estimates for Solid-State Density-Functional Theory Predictions: An Overview by Means of the Ground-State Elemental Crystals , 2012, 1204.2733.

[66]  Matthias Scheffler,et al.  Random-phase approximation and its applications in computational chemistry and materials science , 2012, Journal of Materials Science.

[67]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[68]  S. Grimme,et al.  A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. , 2011, Physical chemistry chemical physics : PCCP.

[69]  F Mittendorfer,et al.  Accurate surface and adsorption energies from many-body perturbation theory. , 2010, Nature materials.

[70]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[71]  Dario Alfè,et al.  PHON: A program to calculate phonons using the small displacement method , 2009, Comput. Phys. Commun..

[72]  D. Bowler,et al.  Chemical accuracy for the van der Waals density functional , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[73]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[74]  Joost VandeVondele,et al.  Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. , 2007, The Journal of chemical physics.

[75]  Artur F Izmaylov,et al.  Influence of the exchange screening parameter on the performance of screened hybrid functionals. , 2006, The Journal of chemical physics.

[76]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[77]  D. Truhlar,et al.  A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. , 2006, The Journal of chemical physics.

[78]  Michele Parrinello,et al.  Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach , 2005, Comput. Phys. Commun..

[79]  William A. Goddard,et al.  The two-phase model for calculating thermodynamic properties of liquids from molecular dynamics: Validation for the phase diagram of Lennard-Jones fluids , 2003 .

[80]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[81]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[82]  M. Klein,et al.  Constant pressure molecular dynamics algorithms , 1994 .

[83]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[84]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[85]  Denis J. Evans,et al.  Computer ‘‘experiment’’ for nonlinear thermodynamics of Couette flow , 1983 .

[86]  Edward Teller,et al.  Interaction of the van der Waals Type Between Three Atoms , 1943 .

[87]  Joost VandeVondele,et al.  cp2k: atomistic simulations of condensed matter systems , 2014 .

[88]  Renata M. Wentzcovitch,et al.  Thermodynamic properties and phase relations in mantle minerals investigated by first principles quasiharmonic theory , 2010 .