Fighting the curse of dimensionality: A method for model validation and uncertainty propagation for complex simulation models

Fighting the Curse of Dimensionality: A method for model validation and uncertainty propagation for complex simulation models

[1]  G. A. Watson,et al.  Choice of norms for data fitting and function approximation , 1998, Acta Numerica.

[2]  David W. Aha,et al.  Special Issue on Lazy Learning , 1997 .

[3]  A. Fam,et al.  An algorithm for computing continuous Chebyshev approximations , 1987 .

[4]  A. Albert Conditions for Positive and Nonnegative Definiteness in Terms of Pseudoinverses , 1969 .

[5]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[6]  Jeremy E. Oakley,et al.  Uncertain Judgements: Eliciting Experts' Probabilities , 2006 .

[7]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[8]  Hal Caswell,et al.  12 – The Validation Problem , 1976 .

[9]  R M Nerem,et al.  A mathematical model of cytosolic calcium dynamics in human umbilical vein endothelial cells. , 1996, The American journal of physiology.

[10]  Nicholas I. M. Gould,et al.  Trust Region Methods , 2000, MOS-SIAM Series on Optimization.

[11]  Henry P. Wynn,et al.  Screening, predicting, and computer experiments , 1992 .

[12]  Dave Higdon,et al.  Combining Field Data and Computer Simulations for Calibration and Prediction , 2005, SIAM J. Sci. Comput..

[13]  Pablo A. Parrilo,et al.  Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..

[14]  Alexander Shapiro,et al.  DUALITY, OPTIMALITY CONDITIONS AND PERTURBATION ANALYSIS , 2000 .

[15]  D. Post,et al.  Computational Science Demands a New Paradigm , 2005 .

[16]  Andrew L. Rukhin,et al.  Tools for statistical inference , 1991 .

[17]  D Sornette,et al.  Algorithm for model validation: Theory and applications , 2007, Proceedings of the National Academy of Sciences.

[18]  C. Howson Hume's problem: induction and the justification of belief , 2000 .

[19]  James V. Beck,et al.  Parameter Estimation in Engineering and Science , 1977 .

[20]  Sunil Arya,et al.  An optimal algorithm for approximate nearest neighbor searching fixed dimensions , 1998, JACM.

[21]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[22]  A. Tarantola Popper, Bayes and the inverse problem , 2006 .

[23]  Jack P. C. Kleijnen,et al.  A Comment on Blanning's “Metamodel for Sensitivity Analysis: The Regression Metamodel in Simulation” , 1975 .

[24]  R. Cooke Experts in Uncertainty: Opinion and Subjective Probability in Science , 1991 .

[25]  Alexander Shapiro Directional differentiability of the optimal value function in convex semi-infinite programming , 1995, Math. Program..

[26]  Keith Beven,et al.  Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology , 2001 .

[27]  G. Pataki The Geometry of Semidefinite Programming , 2000 .

[28]  Miguel F. Anjos,et al.  On Handling Free Variables in Interior-Point Methods for Conic Linear Optimization , 2007, SIAM J. Optim..

[29]  Jack P. C. Kleijnen,et al.  An Overview of the Design and Analysis of Simulation Experiments for Sensitivity Analysis , 2005, Eur. J. Oper. Res..

[30]  Linda Trocine,et al.  Finding important independent variables through screening designs: a comparison of methods , 2000, 2000 Winter Simulation Conference Proceedings (Cat. No.00CH37165).

[31]  R. Fletcher,et al.  Linear Minimax Approximation as the Limit of Best $L_p $-Approximation , 1974 .

[32]  G. A. Watson,et al.  Linear Chebyshev approximation without Chebyshev sets , 1976 .

[33]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[34]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[35]  G. A. Watson,et al.  A Multiple Exchange Algorithm for Multivariate Chebyshev Approximation , 1975 .

[36]  Adrian F. M. Smith,et al.  Bayesian computation via the gibbs sampler and related markov chain monte carlo methods (with discus , 1993 .

[37]  Michael Frenklach,et al.  PRISM: piecewise reusable implementation of solution mapping. An economical strategy for chemical kinetics , 1998 .

[38]  A. Haar,et al.  Die Minkowskische Geometrie und die Annäherung an stetige Funktionen , 1917 .

[39]  William L. Oberkampf,et al.  Methodology for characterizing modeling and discretization uncertainties in computational simulation , 2000 .

[40]  Ryan Feeley,et al.  Consistency of a Reaction Dataset , 2004 .

[41]  G. A. Watson,et al.  Approximation in normal linear spaces , 2000 .

[42]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[43]  Andrew Packard,et al.  Model discrimination using data collaboration. , 2006, The journal of physical chemistry. A.

[44]  Motakuri V. Ramana,et al.  An exact duality theory for semidefinite programming and its complexity implications , 1997, Math. Program..

[45]  James O. Berger,et al.  A Framework for Validation of Computer Models , 2007, Technometrics.

[46]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[47]  Allan Pinkus,et al.  Density in Approximation Theory , 2005 .

[48]  Felipe Cucker,et al.  Learning Theory: An Approximation Theory Viewpoint: Index , 2007 .

[49]  Y. Nesterov Semidefinite relaxation and nonconvex quadratic optimization , 1998 .

[50]  R. Daniel Meyer,et al.  An Analysis for Unreplicated Fractional Factorials , 1986 .

[51]  Didier Dubois,et al.  Possibility Theory - An Approach to Computerized Processing of Uncertainty , 1988 .

[52]  Douglas C. Montgomery,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[53]  T. Brubaker,et al.  Nonlinear Parameter Estimation , 1979 .

[54]  B. Farrington,et al.  The philosophy of Francis Bacon , 1964 .

[55]  S. Prajna Barrier certificates for nonlinear model validation , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[56]  David R. Anderson,et al.  Model Selection and Multimodel Inference , 2003 .

[57]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[58]  Thomas J. Santner,et al.  The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.

[59]  Max D. Morris,et al.  Factorial sampling plans for preliminary computational experiments , 1991 .

[60]  Russell R. Barton,et al.  Metamodeling: a state of the art review , 1994, Proceedings of Winter Simulation Conference.

[61]  G. Lemon,et al.  Metabotropic receptor activation, desensitization and sequestration-I: modelling calcium and inositol 1,4,5-trisphosphate dynamics following receptor activation. , 2003, Journal of theoretical biology.

[62]  Christian P. Robert,et al.  Bayesian computational methods , 2010, 1002.2702.

[63]  Henry Wolkowicz,et al.  Strong Duality for Semidefinite Programming , 1997, SIAM J. Optim..

[64]  Andrew W. Murray,et al.  Cyclin synthesis drives the early embryonic cell cycle , 1989, Nature.

[65]  E. L. Lawler,et al.  Branch-and-Bound Methods: A Survey , 1966, Oper. Res..

[66]  G. Box,et al.  On the Experimental Attainment of Optimum Conditions , 1951 .

[67]  D. Cox,et al.  An Analysis of Transformations , 1964 .

[68]  Peter J Seiler,et al.  Prediction uncertainty from models and data , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[69]  Tony O'Hagan,et al.  Dicing with the unknown , 2004 .

[70]  Didier Henrion,et al.  GloptiPoly: Global optimization over polynomials with Matlab and SeDuMi , 2003, TOMS.

[71]  M. B. Beck,et al.  On the problem of model validation for predictive exposure assessments , 1997 .

[72]  Ken R. McNaught,et al.  Using Morris' randomized OAT design as a factor screening method for developing simulation metamodels , 2004, Proceedings of the 2004 Winter Simulation Conference, 2004..

[73]  Clemens Elster,et al.  A method of trust region type for minimizing noisy functions , 1997, Computing.

[74]  J. C. Mairhuber ON HAAR'S THEOREM CONCERNING CHEBYCHEV APPROXIMATION PROBLEMS HAVING UNIQUE SOLUTIONS' , 1956 .

[75]  M. Kendall,et al.  The Logic of Scientific Discovery. , 1959 .

[76]  M. D. McKay,et al.  A comparison of three methods for selecting values of input variables in the analysis of output from a computer code , 2000 .

[77]  Robert W. Blanning,et al.  The construction and implementation of metamodels , 1975 .

[78]  C. Lemaréchal,et al.  Semidefinite Relaxations and Lagrangian Duality with Application to Combinatorial Optimization , 1999 .

[79]  M. Bergin,et al.  Application of Bayesian Monte Carlo analysis to a Lagrangian photochemical air quality model , 2000 .

[80]  Jon C. Helton,et al.  Challenge Problems : Uncertainty in System Response Given Uncertain Parameters ( DRAFT : November 29 , 2001 ) , 2001 .

[81]  J. Kleijnen Statistical tools for simulation practitioners , 1986 .

[82]  Stephen P. Boyd,et al.  Branch and bound algorithm for computing the minimum stability degree of parameter-dependent linear systems , 1991, International Journal of Robust and Nonlinear Control.

[83]  John D. Bredehoeft,et al.  Ground-water models cannot be validated , 1992 .

[84]  Mauro Birattari,et al.  Lazy Learning Meets the Recursive Least Squares Algorithm , 1998, NIPS.

[85]  M. Evans,et al.  Methods for Approximating Integrals in Statistics with Special Emphasis on Bayesian Integration Problems , 1995 .

[86]  M. Berridge,et al.  The versatility and universality of calcium signalling , 2000, Nature Reviews Molecular Cell Biology.

[87]  George E. P. Box,et al.  Empirical Model‐Building and Response Surfaces , 1988 .

[88]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[89]  Michael Frenklach,et al.  Statistically rigorous parameter estimation in dynamic modeling using approximate empirical models , 1985 .

[90]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[91]  Alexander J. Smola,et al.  Support Vector Regression Machines , 1996, NIPS.

[92]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[93]  Jane M. Booker,et al.  Eliciting and analyzing expert judgement - a practical guide , 2001, ASA-SIAM series on statistics and applied probability.

[94]  Michael L. Overton,et al.  Complementarity and nondegeneracy in semidefinite programming , 1997, Math. Program..

[95]  Peter J Seiler,et al.  Collaborative data processing in developing predictive models of complex reaction systems , 2004 .

[96]  William C. Carpenter,et al.  Effect of design selection on response surface performance , 1993 .

[97]  Henry Wolkowicz,et al.  On Lagrangian Relaxation of Quadratic Matrix Constraints , 2000, SIAM J. Matrix Anal. Appl..

[98]  John C. Doyle,et al.  Application of robust model validation using SOSTOOLS to the study of G-Protein signalling in yeast , 2005 .

[99]  Jon M. Kleinberg,et al.  Two algorithms for nearest-neighbor search in high dimensions , 1997, STOC '97.

[100]  Keith Beven,et al.  The future of distributed models: model calibration and uncertainty prediction. , 1992 .

[101]  Robert G. Sargent,et al.  Verification, validation and accreditation of simulation models , 2000, 2000 Winter Simulation Conference Proceedings (Cat. No.00CH37165).

[102]  Vipin Kumar,et al.  The Challenges of Clustering High Dimensional Data , 2004 .

[103]  Peter J Seiler,et al.  Numerical approaches for collaborative data processing , 2006 .

[104]  Felipe Cucker,et al.  Learning Theory: An Approximation Theory Viewpoint (Cambridge Monographs on Applied & Computational Mathematics) , 2007 .

[105]  Temple F. Smith,et al.  Overview of the Alliance for Cellular Signaling , 2002, Nature.

[106]  Inci Batmaz,et al.  Second-Order Experimental Designs for Simulation Metamodeling , 2002, Simul..

[107]  M. Stone,et al.  Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .

[108]  N Oreskes,et al.  Verification, Validation, and Confirmation of Numerical Models in the Earth Sciences , 1994, Science.

[109]  E. Cheney Introduction to approximation theory , 1966 .

[110]  Gábor Pataki,et al.  On the generic properties of convex optimization problems in conic form , 2001, Math. Program..

[111]  G. E. Wilson,et al.  The role of the PIRT process in experiments, code development and code applications associated with Reactor Safety analysis , 1998 .

[112]  Masakazu Kojima,et al.  Semidefinite Programming Relaxation for Nonconvex Quadratic Programs , 1997, J. Glob. Optim..

[113]  Michael Frenklach,et al.  Sensitivity analysis and parameter estimation in dynamic modeling of chemical kinetics , 1983 .

[114]  T. Trucano,et al.  Verification, Validation, and Predictive Capability in Computational Engineering and Physics , 2004 .

[115]  Karl R. Popper The Logic of Scientific Discovery. , 1977 .