A computational study of f-reversible processes on graphs

Abstract An f -reversible process on a graph  G = ( V , E ) is a graph dynamical system on  V ( G ) defined as follows. Given a function  f : V ( G ) → N and an initial vertex labeling  c 0 : V ( G ) → { 0 , 1 } , every vertex  v changes its label if and only if at least  f ( v ) of its neighbors have the opposite state, synchronously in discrete-time. For such processes, we present a new nondecreasing time function similar to the monotonically decreasing energy functions used to study threshold networks, which leads to a periodic behavior after a transient phase. Using this new function, we provide a tight upper bound on the transient length of  f -reversible processes. Furthermore, we prove that it is equal to  n − 3 for trees with  n ≥ 4 vertices and  Im ( f ) = { 2 } . Moreover we present an algorithm that generates all the initial configurations attaining this bound and we prove that the number of such configurations is  O ( n ) . We also consider the problem of determining the smallest number  r f ( G ) of vertices with initial label 1 for which all the vertices eventually reach label 1 after the complete evolution of the dynamics, which models consensus problems on networks. We prove that it is N P -hard to compute  r f ( G ) even for bipartite graphs with  Δ ( G ) ≤ 3 and  Im ( f ) = { 1 , 2 , 3 } . Finally, we prove that  β ( G ) ≤ r f ( G ) ≤ β ( G ) + 1 , when  f ( v ) = d ( v ) for all  v ∈ V ( G ) , where  β ( G ) is the size of a minimum vertex cover of  G .

[1]  Paul A. Dreyer APPLICATIONS AND VARIATIONS OF DOMINATION IN GRAPHS , 2000 .

[2]  Yair Caro,et al.  Dynamic approach to k-forcing , 2014, 1405.7573.

[3]  Nabil H. Mustafa,et al.  Listen to Your Neighbors: How (Not) to Reach a Consensus , 2004, SIAM J. Discret. Math..

[4]  Zvia Agur Fixed Points of Majority Rule Cellular Automata with Application to Plasticity and Precision of the Immune System , 1991, Complex Syst..

[5]  David Peleg,et al.  Local majorities, coalitions and monopolies in graphs: a review , 2002, Theor. Comput. Sci..

[6]  Pekka Orponen,et al.  General-Purpose Computation with Neural Networks: A Survey of Complexity Theoretic Results , 2003, Neural Computation.

[7]  Kenneth A. Dawson,et al.  Bootstrap Percolation , 2009, Encyclopedia of Complexity and Systems Science.

[8]  Eric Goles Ch.,et al.  Comportement periodique des fonctions a seuil binaires et applications , 1981, Discret. Appl. Math..

[9]  John J. Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities , 1999 .

[10]  Svatopluk Poljak,et al.  On pre-periods of discrete influence systems , 1986, Discret. Appl. Math..

[11]  Eric Goles Ch.,et al.  The Convergence of Symmetric Threshold Automata , 1981, Inf. Control..

[12]  Paola Flocchini,et al.  On time versus size for monotone dynamic monopolies in regular topologies , 2000, SIROCCO.

[13]  Fred S. Roberts,et al.  Irreversible k-threshold processes: Graph-theoretical threshold models of the spread of disease and of opinion , 2009, Discret. Appl. Math..

[14]  Jayme Luiz Szwarcfiter,et al.  Irreversible conversion of graphs , 2011, Theor. Comput. Sci..

[15]  Louis A. Romero,et al.  A Cellular Automata Method for Phase Unwrapping , 1986, Topical Meeting On Signal Recovery and Synthesis II.

[16]  Ning Chen,et al.  On the approximability of influence in social networks , 2008, SODA '08.

[17]  Eric Goles Ch.,et al.  Decreasing energy functions as a tool for studying threshold networks , 1985, Discret. Appl. Math..

[18]  Andrea Montanari,et al.  Convergence to Equilibrium in Local Interaction Games , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[19]  Pekka Orponen,et al.  Computational complexity of neural networks: a survey , 1994 .

[20]  Jeremy D. Knutson A survey of the use of cellular automata and cellular automata-like models for simulating a population of biological cells , 2011 .

[21]  David Peleg,et al.  Distributed Probabilistic Polling and Applications to Proportionate Agreement , 1999, Inf. Comput..

[22]  Svatopluk Poljak,et al.  On periodical behaviour in societies with symmetric influences , 1983, Comb..

[23]  G. Vichniac Simulating physics with cellular automata , 1984 .

[24]  Jon Kleinberg,et al.  Maximizing the spread of influence through a social network , 2003, KDD '03.

[25]  Pavol Hell,et al.  Influence Diffusion in Social Networks under Time Window Constraints , 2013, SIROCCO.

[26]  Béla Bollobás,et al.  Random majority percolation , 2010 .

[27]  M. Degroot Reaching a Consensus , 1974 .

[28]  Nicola Santoro,et al.  Optimal irreversible dynamos in chordal rings , 2001, Discret. Appl. Math..

[29]  Fábio Protti,et al.  The predecessor-existence problem for k-reversible processes , 2015, Theor. Comput. Sci..

[30]  Jayme Luiz Szwarcfiter,et al.  Reversible iterative graph processes , 2012, Theor. Comput. Sci..

[31]  Shay Kutten,et al.  Fault-Local Distributed Mending , 1999, J. Algorithms.

[32]  Sui Huang Gene expression profiling, genetic networks, and cellular states: an integrating concept for tumorigenesis and drug discovery , 1999, Journal of Molecular Medicine.

[33]  Harry B. Hunt,et al.  Complexity of reachability problems for finite discrete dynamical systems , 2006, J. Comput. Syst. Sci..

[34]  K. Abbas,et al.  MODELING INFECTIOUS DISEASES USING GLOBAL STOCHASTIC CELLULAR AUTOMATA , 2005 .

[35]  J. French A formal theory of social power. , 1956, Psychology Review.

[36]  Svatopluk Poljak,et al.  On an application of convexity to discrete systems , 1986, Discret. Appl. Math..