Magnetization Slow Dynamics in Ferrocenium Complexes.
暂无分享,去创建一个
R. Clérac | M. P. Shores | M. Pink | E. Ruiz | J. Telser | Jeremy M. Smith | D. Tierney | M. Rouzières | Tarik J. Ozumerzifon | Martín Amoza | Wesley A. Hoffert | M. Ding | Anne K. Hickey
[1] D. Aravena. Ab Initio Prediction of Tunneling Relaxation Times and Effective Demagnetization Barriers in Kramers Lanthanide Single-Molecule Magnets. , 2018, The journal of physical chemistry letters.
[2] O. Sato,et al. Slow Magnetic Relaxation in a Mononuclear Ruthenium(III) Complex. , 2017, Chemistry.
[3] D. Dickie,et al. Spectroscopic and Computational Studies of Spin States of Iron(IV) Nitrido and Imido Complexes. , 2017, Inorganic chemistry.
[4] R. Righini,et al. Spin Dynamics and Low Energy Vibrations: Insights from Vanadyl-Based Potential Molecular Qubits. , 2017, Journal of the American Chemical Society.
[5] Marc D. Walter,et al. Teaching Ferrocenium How to Relax: A Systematic Study on Spin–Lattice Relaxation Processes in tert‐Butyl‐Substituted Ferrocenium Derivatives , 2017 .
[6] R. Boča,et al. Field Supported Slow Magnetic Relaxation in a Mononuclear Cu(II) Complex. , 2017, Inorganic chemistry.
[7] L. Sorace,et al. Giant spin-phonon bottleneck effects in evaporable vanadyl-based molecules with long spin coherence. , 2016, Dalton transactions.
[8] M. Chiesa,et al. Quantum Coherence Times Enhancement in Vanadium(IV)-based Potential Molecular Qubits: the Key Role of the Vanadyl Moiety. , 2016, Journal of the American Chemical Society.
[9] K. Meyer,et al. Isolation and structural and electronic characterization of salts of the decamethylferrocene dication , 2016, Science.
[10] I. Felner,et al. Lattice dynamics, phase transitions and spin relaxation in [Fe(C5H5)2] PF6 , 2016 .
[11] R. Clérac,et al. A low spin manganese(iv) nitride single molecule magnet , 2016, Chemical science.
[12] I. Bruno,et al. Cambridge Structural Database , 2002 .
[13] V. Mereacre,et al. Field-Induced Slow Magnetic Relaxation in the Ni(I) Complexes [NiCl(PPh3)2]·C4H8O and [Ni(N(SiMe3)2)(PPh3)2]. , 2016, Inorganic chemistry.
[14] A. Caneschi,et al. Quantum coherence in a processable vanadyl complex: new tools for the search of molecular spin qubits , 2015, Chemical science.
[15] R. Clérac,et al. Partial nitrogen atom transfer: a new synthetic tool to design single-molecule magnets. , 2015, Inorganic chemistry.
[16] Silvia Gómez-Coca,et al. Large magnetic anisotropy in mononuclear metal complexes , 2015 .
[17] D. Subedi,et al. Steric and electronic control of the spin state in three-fold symmetric, four-coordinate iron(II) complexes. , 2014, Journal of the American Chemical Society.
[18] D. Subedi,et al. EPR, ENDOR, and Electronic Structure Studies of the Jahn–Teller Distortion in an FeV Nitride , 2014, Journal of the American Chemical Society.
[19] Timothy A. Jackson,et al. Addition to Vanadocene de Novo: Spectroscopic and Computational Analysis of Bis(η5-cyclopentadienyl)vanadium(II) , 2014 .
[20] R. Clérac,et al. Photoinduced single-molecule magnet properties in a four-coordinate iron(II) spin crossover complex. , 2013, Journal of the American Chemical Society.
[21] E. Cremades,et al. Mononuclear single-molecule magnets: tailoring the magnetic anisotropy of first-row transition-metal complexes. , 2013, Journal of the American Chemical Society.
[22] Timothy A. Jackson,et al. Vanadocene de Novo: Spectroscopic and Computational Analysis of Bis(η5-cyclopentadienyl)vanadium(II) , 2012 .
[23] T. Harris,et al. Spin crossover in a four-coordinate iron(II) complex. , 2011, Journal of the American Chemical Society.
[24] FRANCESCO AQUILANTE,et al. MOLCAS 7: The Next Generation , 2010, J. Comput. Chem..
[25] Roland Lindh,et al. New relativistic atomic natural orbital basis sets for lanthanide atoms with applications to the Ce diatom and LuF3. , 2008, The journal of physical chemistry. A.
[26] F. Weigend,et al. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.
[27] R. K. Jetti,et al. 57Fe-labeled octamethylferrocenium tetrafluoroborate. X-ray crystal structures of conformational isomers, hyperfine interactions, and spin-lattice relaxation by Moessbauer spectroscopy. , 2005, Journal of the American Chemical Society.
[28] B. Roos,et al. Molcas: a program package for computational chemistry. , 2003 .
[29] Celestino Angeli,et al. Introduction of n-electron valence states for multireference perturbation theory , 2001 .
[30] I. Nowik,et al. Ring rotation and anomalous metal atom motion in octamethyl ferrocene and spin-lattice relaxation in octamethyl ferrocenium hexafluorophosphate , 2000 .
[31] A. Roig,et al. Selective oxidants for organometallic compounds containing a stabilising anion of highly reactive cations: (3,5(CF3)2C6H3)4B−)Cp2Fe+ and (3,5(CF3)2C6H3)4B−)Cp*2Fe+ , 2000 .
[32] M. Abraham,et al. Fast paramagnetic relaxation in Mössbauer spectra of ferrocenium salts , 1999 .
[33] S. Mangani,et al. The redox behaviour of ferrocene derivatives: VI. Benzylferrocenes. The crystal structure of decabenzylferrocenium tetrafluoroborate , 1994 .
[34] Hans W. Horn,et al. Fully optimized contracted Gaussian basis sets for atoms Li to Kr , 1992 .
[35] Richard A. Brown,et al. Interesting magnetic effects caused by bulky substituents in ferrocenium salts. Zero applied-field magnetic hyperfine interactions in 1,1',3,3'-tetrakis(trimethylsilyl)ferrocenium triflate , 1992 .
[36] C. Janiak,et al. Synthesis and structure of Fe[C5(CH2Ph)5]2 and Lu(C8H8)[C5(CH2Ph)5] , 1989 .
[37] A. Abragam. His majesty the spin and the youngest princess μSR , 1986 .
[38] K. Shrivastava. Theory of Spin–Lattice Relaxation , 1983 .
[39] K. Shrivastava,et al. Optical‐acoustic two‐phonon relaxation in spin systems , 1979 .
[40] A. Maki,et al. Electronic ground states of manganocene and 1,1'-dimethylmanganocene , 1974 .
[41] K. D. Warren. Ligand field theory of metal sandwich complexes. Magnetic properties of dx configurations , 1974 .
[42] H. Gray,et al. Magnetic susceptibility study of various ferricenium and iron(III) dicarbollide compounds , 1971 .
[43] R. Prins. Electronic structure of the ferricenium cation , 1970 .
[44] H. Gray,et al. Electronic structure of ferricenium ion , 1970 .
[45] R. Prins,et al. Electron spin resonance of the cation of ferrocene , 1969 .
[46] T. J. KEALY,et al. A New Type of Organo-Iron Compound , 1951, Nature.
[47] J. V. Vleck. Paramagnetic Relaxation Times for Titanium and Chrome Alum , 1940 .
[48] Frank Neese,et al. Software update: the ORCA program system, version 4.0 , 2018 .
[49] Robert Kohl,et al. Electron Paramagnetic Resonance Of Transition Ions , 2016 .
[50] Frank Neese,et al. The ORCA program system , 2012 .
[51] I. R. Butler,et al. 6.05 – Mononuclear Iron Compounds: Ferrocenes , 2007 .
[52] D. Mingos,et al. Comprehensive organometallic chemistry III , 2007 .
[53] Roland Lindh,et al. 2MOLCAS as a development platform for quantum chemistry software , 2004 .
[54] J. Atwood,et al. Formation and molecular structures of (.eta.5-pentabenzylcyclopentadienyl)- and (.eta.5-pentaphenylcyclopentadienyl)dicarbonyl derivatives of cobalt and rhodium , 1986 .