Magnetization Slow Dynamics in Ferrocenium Complexes.

The Single-Molecule Magnet (SMM) properties of a series of ferrocenium complexes, [Fe(η5-C5R5)2]+ (R = Me, Bn), are reported. In the presence of an applied dc field, the slow dynamics of the magnetization in [Fe(η5-C5Me5)2]BArF are revealed. Multireference quantum mechanical calculations show a large energy difference between the ground and first excited states, excluding the commonly invoked, thermally activated (Orbach-like) mechanism of relaxation. In contrast, a detailed analysis of the relaxation time highlights that both direct and Raman processes are responsible for the SMM properties. Similarly, the bulky ferrocenium complexes, [Fe(η5-C5Bn5)2]BF4 and [Fe(η5-C5Bn5)2]PF6, also exhibit magnetization slow dynamics, however an additional relaxation process is clearly detected for these analogous systems.

[1]  D. Aravena Ab Initio Prediction of Tunneling Relaxation Times and Effective Demagnetization Barriers in Kramers Lanthanide Single-Molecule Magnets. , 2018, The journal of physical chemistry letters.

[2]  O. Sato,et al.  Slow Magnetic Relaxation in a Mononuclear Ruthenium(III) Complex. , 2017, Chemistry.

[3]  D. Dickie,et al.  Spectroscopic and Computational Studies of Spin States of Iron(IV) Nitrido and Imido Complexes. , 2017, Inorganic chemistry.

[4]  R. Righini,et al.  Spin Dynamics and Low Energy Vibrations: Insights from Vanadyl-Based Potential Molecular Qubits. , 2017, Journal of the American Chemical Society.

[5]  Marc D. Walter,et al.  Teaching Ferrocenium How to Relax: A Systematic Study on Spin–Lattice Relaxation Processes in tert‐Butyl‐Substituted Ferrocenium Derivatives , 2017 .

[6]  R. Boča,et al.  Field Supported Slow Magnetic Relaxation in a Mononuclear Cu(II) Complex. , 2017, Inorganic chemistry.

[7]  L. Sorace,et al.  Giant spin-phonon bottleneck effects in evaporable vanadyl-based molecules with long spin coherence. , 2016, Dalton transactions.

[8]  M. Chiesa,et al.  Quantum Coherence Times Enhancement in Vanadium(IV)-based Potential Molecular Qubits: the Key Role of the Vanadyl Moiety. , 2016, Journal of the American Chemical Society.

[9]  K. Meyer,et al.  Isolation and structural and electronic characterization of salts of the decamethylferrocene dication , 2016, Science.

[10]  I. Felner,et al.  Lattice dynamics, phase transitions and spin relaxation in [Fe(C5H5)2] PF6 , 2016 .

[11]  R. Clérac,et al.  A low spin manganese(iv) nitride single molecule magnet , 2016, Chemical science.

[12]  I. Bruno,et al.  Cambridge Structural Database , 2002 .

[13]  V. Mereacre,et al.  Field-Induced Slow Magnetic Relaxation in the Ni(I) Complexes [NiCl(PPh3)2]·C4H8O and [Ni(N(SiMe3)2)(PPh3)2]. , 2016, Inorganic chemistry.

[14]  A. Caneschi,et al.  Quantum coherence in a processable vanadyl complex: new tools for the search of molecular spin qubits , 2015, Chemical science.

[15]  R. Clérac,et al.  Partial nitrogen atom transfer: a new synthetic tool to design single-molecule magnets. , 2015, Inorganic chemistry.

[16]  Silvia Gómez-Coca,et al.  Large magnetic anisotropy in mononuclear metal complexes , 2015 .

[17]  D. Subedi,et al.  Steric and electronic control of the spin state in three-fold symmetric, four-coordinate iron(II) complexes. , 2014, Journal of the American Chemical Society.

[18]  D. Subedi,et al.  EPR, ENDOR, and Electronic Structure Studies of the Jahn–Teller Distortion in an FeV Nitride , 2014, Journal of the American Chemical Society.

[19]  Timothy A. Jackson,et al.  Addition to Vanadocene de Novo: Spectroscopic and Computational Analysis of Bis(η5-cyclopentadienyl)vanadium(II) , 2014 .

[20]  R. Clérac,et al.  Photoinduced single-molecule magnet properties in a four-coordinate iron(II) spin crossover complex. , 2013, Journal of the American Chemical Society.

[21]  E. Cremades,et al.  Mononuclear single-molecule magnets: tailoring the magnetic anisotropy of first-row transition-metal complexes. , 2013, Journal of the American Chemical Society.

[22]  Timothy A. Jackson,et al.  Vanadocene de Novo: Spectroscopic and Computational Analysis of Bis(η5-cyclopentadienyl)vanadium(II) , 2012 .

[23]  T. Harris,et al.  Spin crossover in a four-coordinate iron(II) complex. , 2011, Journal of the American Chemical Society.

[24]  FRANCESCO AQUILANTE,et al.  MOLCAS 7: The Next Generation , 2010, J. Comput. Chem..

[25]  Roland Lindh,et al.  New relativistic atomic natural orbital basis sets for lanthanide atoms with applications to the Ce diatom and LuF3. , 2008, The journal of physical chemistry. A.

[26]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[27]  R. K. Jetti,et al.  57Fe-labeled octamethylferrocenium tetrafluoroborate. X-ray crystal structures of conformational isomers, hyperfine interactions, and spin-lattice relaxation by Moessbauer spectroscopy. , 2005, Journal of the American Chemical Society.

[28]  B. Roos,et al.  Molcas: a program package for computational chemistry. , 2003 .

[29]  Celestino Angeli,et al.  Introduction of n-electron valence states for multireference perturbation theory , 2001 .

[30]  I. Nowik,et al.  Ring rotation and anomalous metal atom motion in octamethyl ferrocene and spin-lattice relaxation in octamethyl ferrocenium hexafluorophosphate , 2000 .

[31]  A. Roig,et al.  Selective oxidants for organometallic compounds containing a stabilising anion of highly reactive cations: (3,5(CF3)2C6H3)4B−)Cp2Fe+ and (3,5(CF3)2C6H3)4B−)Cp*2Fe+ , 2000 .

[32]  M. Abraham,et al.  Fast paramagnetic relaxation in Mössbauer spectra of ferrocenium salts , 1999 .

[33]  S. Mangani,et al.  The redox behaviour of ferrocene derivatives: VI. Benzylferrocenes. The crystal structure of decabenzylferrocenium tetrafluoroborate , 1994 .

[34]  Hans W. Horn,et al.  Fully optimized contracted Gaussian basis sets for atoms Li to Kr , 1992 .

[35]  Richard A. Brown,et al.  Interesting magnetic effects caused by bulky substituents in ferrocenium salts. Zero applied-field magnetic hyperfine interactions in 1,1',3,3'-tetrakis(trimethylsilyl)ferrocenium triflate , 1992 .

[36]  C. Janiak,et al.  Synthesis and structure of Fe[C5(CH2Ph)5]2 and Lu(C8H8)[C5(CH2Ph)5] , 1989 .

[37]  A. Abragam His majesty the spin and the youngest princess μSR , 1986 .

[38]  K. Shrivastava Theory of Spin–Lattice Relaxation , 1983 .

[39]  K. Shrivastava,et al.  Optical‐acoustic two‐phonon relaxation in spin systems , 1979 .

[40]  A. Maki,et al.  Electronic ground states of manganocene and 1,1'-dimethylmanganocene , 1974 .

[41]  K. D. Warren Ligand field theory of metal sandwich complexes. Magnetic properties of dx configurations , 1974 .

[42]  H. Gray,et al.  Magnetic susceptibility study of various ferricenium and iron(III) dicarbollide compounds , 1971 .

[43]  R. Prins Electronic structure of the ferricenium cation , 1970 .

[44]  H. Gray,et al.  Electronic structure of ferricenium ion , 1970 .

[45]  R. Prins,et al.  Electron spin resonance of the cation of ferrocene , 1969 .

[46]  T. J. KEALY,et al.  A New Type of Organo-Iron Compound , 1951, Nature.

[47]  J. V. Vleck Paramagnetic Relaxation Times for Titanium and Chrome Alum , 1940 .

[48]  Frank Neese,et al.  Software update: the ORCA program system, version 4.0 , 2018 .

[49]  Robert Kohl,et al.  Electron Paramagnetic Resonance Of Transition Ions , 2016 .

[50]  Frank Neese,et al.  The ORCA program system , 2012 .

[51]  I. R. Butler,et al.  6.05 – Mononuclear Iron Compounds: Ferrocenes , 2007 .

[52]  D. Mingos,et al.  Comprehensive organometallic chemistry III , 2007 .

[53]  Roland Lindh,et al.  2MOLCAS as a development platform for quantum chemistry software , 2004 .

[54]  J. Atwood,et al.  Formation and molecular structures of (.eta.5-pentabenzylcyclopentadienyl)- and (.eta.5-pentaphenylcyclopentadienyl)dicarbonyl derivatives of cobalt and rhodium , 1986 .