Self-Adaptation in Evolutionary Algorithms

Summary. In this chapter, we will give an overview over self-adaptive methods in evolutionary algorithms. Self-adaptation in its purest meaning is a state-of-the-art method to adjust the setting of control parameters. It is called self-adaptive because the algorithm controls the setting of these parameters itself – embedding them into an individual’s genome and evolving them. We will start with a short history of adaptation methods. The section is followed by a presentation of classification schemes for adaptation rules. Afterwards, we will review empirical and theoretical research of self-adaptation methods applied in genetic algorithms, evolutionary programming, and evolution strategies.

[1]  B. Freisleben,et al.  Optimization of Genetic Algorithms by Genetic Algorithms , 1993 .

[2]  Larry J. Eshelman,et al.  Crossover's Niche , 1993, ICGA.

[3]  Robert E. Mercer,et al.  ADAPTIVE SEARCH USING A REPRODUCTIVE META‐PLAN , 1978 .

[4]  W. Spears,et al.  On the Virtues of Parameterized Uniform Crossover , 1995 .

[5]  R. Lewontin ‘The Selfish Gene’ , 1977, Nature.

[6]  Olivier François,et al.  Global convergence for evolution strategies in spherical problems: some simple proofs and difficulties , 2003, Theor. Comput. Sci..

[7]  William M. Spears,et al.  Crossover or Mutation? , 1992, FOGA.

[8]  Xin Yao,et al.  Adapting Self-Adaptive Parameters in Evolutionary Algorithms , 2001, Applied Intelligence.

[9]  Roger Weinberg,et al.  Computer simulation of a living cell , 1970 .

[10]  Nichael Lynn Cramer,et al.  A Representation for the Adaptive Generation of Simple Sequential Programs , 1985, ICGA.

[11]  John R. Koza,et al.  Hierarchical Genetic Algorithms Operating on Populations of Computer Programs , 1989, IJCAI.

[12]  Hans-Georg Beyer,et al.  Toward a Theory of Evolution Strategies: Self-Adaptation , 1995, Evolutionary Computation.

[13]  Hans-Paul Schwefel,et al.  Evolution strategies – A comprehensive introduction , 2002, Natural Computing.

[14]  D. Wolpert,et al.  No Free Lunch Theorems for Search , 1995 .

[15]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..

[16]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[17]  Christian Bierwirth,et al.  Control of Parallel Population Dynamics by Social-Like Behavior of GA-Individuals , 1994, PPSN.

[18]  A. E. Eiben,et al.  Orgy in the Computer: Multi-Parent Reproduction in Genetic Algorithms , 1995, ECAL.

[19]  R. H.J.MULLE THE RELATION OF RECOMBINATION TO MUTATIONAL ADVANCE , 2002 .

[20]  David E. GoldbergDepartment Decision Making in Genetic Algorithms: a Signal-to-noise Perspective Decision Making in Genetic Algorithms: a Signal-to-noise Perspective , 1994 .

[21]  Jeffrey Horn,et al.  Handbook of evolutionary computation , 1997 .

[22]  Lawrence Davis,et al.  Adapting Operator Probabilities in Genetic Algorithms , 1989, ICGA.

[23]  E. Weinberger,et al.  Correlated and uncorrelated fitness landscapes and how to tell the difference , 1990, Biological Cybernetics.

[24]  Schloss Birlinghoven,et al.  How Genetic Algorithms Really Work I.mutation and Hillclimbing , 2022 .

[25]  Christopher Stone,et al.  Strategy Parameter Variety In Self-adaptation Of Mutation Rates , 2002, GECCO.

[26]  Larry J. Eshelman,et al.  Preventing Premature Convergence in Genetic Algorithms by Preventing Incest , 1991, ICGA.

[27]  Robert E. Smith,et al.  Adaptively Resizing Populations: Algorithm, Analysis, and First Results , 1993, Complex Syst..

[28]  Bernard Manderick,et al.  The Genetic Algorithm and the Structure of the Fitness Landscape , 1991, ICGA.

[29]  Michèle Sebag,et al.  Controlling Crossover through Inductive Learning , 1994, PPSN.

[30]  Thomas Bäck,et al.  Optimal Mutation Rates in Genetic Search , 1993, ICGA.

[31]  A. Auger Convergence results for the ( 1 , )-SA-ES using the theory of-irreducible Markov chains , 2005 .

[32]  Bryant A. Julstrom,et al.  Adaptive operator probabilities in a genetic algorithm that applies three operators , 1997, SAC '97.

[33]  A. E. Eiben,et al.  Multi-Parent's Niche: n-ary Crossovers on NK-Landscapes , 1996, PPSN.

[34]  Gilbert Syswerda,et al.  Simulated Crossover in Genetic Algorithms , 1992, FOGA.

[35]  James R. Levenick,et al.  Metabits: Generic Endogenous Crossover Control , 1995, International Conference on Genetic Algorithms.

[36]  Mikhail A. Semenov,et al.  Analysis of Convergence of an Evolutionary Algorithm with Self-Adaptation using a Stochastic Lyapunov function , 2003, Evolutionary Computation.

[37]  Eörs Szathmáry,et al.  The Major Transitions in Evolution , 1997 .

[38]  Dirk Schlierkamp Voosen Strategy Adaptation by Competing Subpopulations , 1994 .

[39]  Larry J. Eshelman,et al.  Biases in the Crossover Landscape , 1989, ICGA.

[40]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[41]  Kenneth A. De Jong,et al.  Generation Gaps Revisited , 1992, FOGA.

[42]  Dipl. Ing. Karl Heinz Kellermayer NUMERISCHE OPTIMIERUNG VON COMPUTER-MODELLEN MITTELS DER EVOLUTIONSSTRATEGIE Hans-Paul Schwefel Birkhäuser, Basel and Stuttgart, 1977 370 pages Hardback SF/48 ISBN 3-7643-0876-1 , 1977 .

[43]  Melanie Mitchell,et al.  Relative Building-Block Fitness and the Building Block Hypothesis , 1992, FOGA.

[44]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[45]  Kenneth A. De Jong,et al.  An Analysis of the Interacting Roles of Population Size and Crossover in Genetic Algorithms , 1990, PPSN.

[46]  Kalyanmoy Deb,et al.  A Comparative Analysis of Selection Schemes Used in Genetic Algorithms , 1990, FOGA.

[47]  Peter J. Angeline,et al.  Adaptive and Self-adaptive Evolutionary Computations , 1995 .

[48]  Melanie Mitchell,et al.  The royal road for genetic algorithms: Fitness landscapes and GA performance , 1991 .

[49]  Jim Smith,et al.  Self adaptation of mutation rates in a steady state genetic algorithm , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[50]  Frank Kursawe,et al.  Grundlegende empirische Untersuchungen der Parameter von Evolutionsstrategien - Metastrategien , 1999 .

[51]  William E. Hart,et al.  Convergence of a discretized self-adaptive evolutionary algorithm on multi-dimensional problems. , 2003 .

[52]  Larry J. Eshelman,et al.  Productive Recombination and Propagating and Preserving Schemata , 1994, FOGA.

[53]  Terence C. Fogarty,et al.  Varying the Probability of Mutation in the Genetic Algorithm , 1989, ICGA.

[54]  Zbigniew Michalewicz,et al.  Adaptation in evolutionary computation: a survey , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[55]  Kalyanmoy Deb,et al.  Self-Adaptation in Real-Parameter Genetic Algorithms with Simulated Binary Crossover , 1999, GECCO.

[56]  Yukinori Kakazu,et al.  Adaptive Search Strategy for Genetic Algorithms with Additional Genetic Algorithms , 1992, PPSN.

[57]  Gilbert Syswerda,et al.  A Study of Reproduction in Generational and Steady State Genetic Algorithms , 1990, FOGA.

[58]  Kalyanmoy Deb,et al.  On self-adaptive features in real-parameter evolutionary algorithms , 2001, IEEE Trans. Evol. Comput..

[59]  Bernard Manderick,et al.  The Usefulness of Recombination , 1995, ECAL.

[60]  Terence C. Fogarty,et al.  Comparison of steady state and generational genetic algorithms for use in nonstationary environments , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[61]  A. E. Eiben,et al.  Genetic algorithms with multi-parent recombination , 1994, PPSN.

[62]  Gilbert Syswerda,et al.  Uniform Crossover in Genetic Algorithms , 1989, ICGA.

[63]  John J. Grefenstette,et al.  Genetic Algorithms for Tracking Changing Environments , 1993, ICGA.

[64]  Terence C. Fogarty,et al.  Microprocessor design verification by two-phase evolution of variable length tests , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[65]  Jan Paredis,et al.  The Symbiotic Evolution of Solutions and Their Representations , 1995, International Conference on Genetic Algorithms.

[66]  Kalyanmoy Deb,et al.  Genetic Algorithms, Noise, and the Sizing of Populations , 1992, Complex Syst..

[67]  Günter Rudolph,et al.  Self-adaptive mutations may lead to premature convergence , 2001, IEEE Trans. Evol. Comput..

[68]  T. Ikegami,et al.  Homeochaos: dynamic stability of a symbiotic network with population dynamics and evolving mutation rates , 1992 .

[69]  L. Altenberg The evolution of evolvability in genetic programming , 1994 .

[70]  Anne Auger,et al.  Convergence results for the (1, lambda)-SA-ES using the theory of phi-irreducible Markov chains , 2005, Theor. Comput. Sci..

[71]  Cees H. M. van Kemenade Explicit Filtering of Building Blocks for Genetic Algorithms , 1996, PPSN.

[72]  Heinz Mühlenbein,et al.  Fuzzy Recombination for the Breeder Genetic Algorithm , 1995, ICGA.

[73]  Kenneth A. De Jong,et al.  An Analysis of Multi-Point Crossover , 1990, FOGA.

[74]  Larry Bull,et al.  Evolutionary computing in multi-agent environments: Partners , 1997 .

[75]  Bryant A. Julstrom,et al.  What Have You Done for Me Lately? Adapting Operator Probabilities in a Steady-State Genetic Algorithm , 1995, ICGA.

[76]  William M. Spears,et al.  Adapting Crossover in Evolutionary Algorithms , 1995, Evolutionary Programming.

[77]  Lalit M. Patnaik,et al.  Adaptive probabilities of crossover and mutation in genetic algorithms , 1994, IEEE Trans. Syst. Man Cybern..

[78]  J. Reed,et al.  Simulation of biological evolution and machine learning. I. Selection of self-reproducing numeric patterns by data processing machines, effects of hereditary control, mutation type and crossing. , 1967, Journal of theoretical biology.

[79]  Hajime Kita,et al.  A Comparison Study of Self-Adaptation in Evolution Strategies and Real-Coded Genetic Algorithms , 2001, Evolutionary Computation.

[80]  Carlos Alberto Conceição António,et al.  Self-adaptation in Genetic Algorithms applied to structural optimization , 2008 .

[81]  David B. Fogel,et al.  Evolving artificial intelligence , 1992 .

[82]  Thomas Bäck,et al.  The Interaction of Mutation Rate, Selection, and Self-Adaptation Within a Genetic Algorithm , 1992, PPSN.

[83]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[84]  Kalyanmoy Deb,et al.  Messy Genetic Algorithms: Motivation, Analysis, and First Results , 1989, Complex Syst..

[85]  Rajarshi Das,et al.  A Study of Control Parameters Affecting Online Performance of Genetic Algorithms for Function Optimization , 1989, ICGA.

[86]  John Daniel. Bagley,et al.  The behavior of adaptive systems which employ genetic and correlation algorithms : technical report , 1967 .

[87]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[88]  H. Beyer,et al.  Some observations on the interaction of recombination and self-adaptation in evolution strategies , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[89]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[90]  Kalyanmoy Deb,et al.  A flexible optimization procedure for mechanical component design based on genetic adaptive search , 1998 .

[91]  Hideyuki Takagi,et al.  Dynamic Control of Genetic Algorithms Using Fuzzy Logic Techniques , 1993, ICGA.

[92]  Günter Rudolph,et al.  A cellular genetic algorithm with self-adjusting acceptance threshold , 1995 .

[93]  David B. Fogel,et al.  Meta-evolutionary programming , 1991, [1991] Conference Record of the Twenty-Fifth Asilomar Conference on Signals, Systems & Computers.

[94]  Hans-Georg Beyer,et al.  On the analysis of self-adaptive recombination strategies: first results , 2005, 2005 IEEE Congress on Evolutionary Computation.

[95]  Thomas Bäck,et al.  Evolutionary Algorithms: The Role of Mutation and Recombination , 2000 .

[96]  Kalyanmoy Deb,et al.  Self-Adaptive Genetic Algorithms with Simulated Binary Crossover , 2001, Evolutionary Computation.

[97]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[98]  Kenneth A. De Jong,et al.  A Cooperative Coevolutionary Approach to Function Optimization , 1994, PPSN.

[99]  Jim Smith,et al.  Recombination strategy adaptation via evolution of gene linkage , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[100]  Lashon B. Booker,et al.  Recombination Distributions for Genetic Algorithms , 1992, FOGA.

[101]  Dirk Thierens,et al.  Mixing in Genetic Algorithms , 1993, ICGA.

[102]  M. Yamamura,et al.  A functional specialization hypothesis for designing genetic algorithms , 1999, IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028).

[103]  Nikolaus Hansen,et al.  A Derandomized Approach to Self-Adaptation of Evolution Strategies , 1994, Evolutionary Computation.

[104]  Katia Sycara,et al.  Reasons for premature convergence of self-adapting mutation rates , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[105]  Zbigniew Michalewicz,et al.  GAVaPS-a genetic algorithm with varying population size , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[106]  Jim Smith,et al.  Modelling gas with self adaptive mutation rates , 2001 .

[107]  Jim Smith,et al.  Operator and parameter adaptation in genetic algorithms , 1997, Soft Comput..

[108]  Larry J. Eshelman,et al.  On Crossover as an Evolutionarily Viable Strategy , 1991, ICGA.

[109]  R. Rosenberg Simulation of genetic populations with biochemical properties : technical report , 1967 .

[110]  Hans-Georg Beyer,et al.  The Theory of Evolution Strategies , 2001, Natural Computing Series.

[111]  Thomas Bäck,et al.  A Survey of Evolution Strategies , 1991, ICGA.

[112]  Zbigniew Michalewicz,et al.  Self-Adaptive Genetic Algorithm for Numeric Functions , 1996, PPSN.

[113]  Jim Smith,et al.  An Adaptive Poly-Parental Recombination Strategy , 1995, Evolutionary Computing, AISB Workshop.

[114]  R. A. Fisher,et al.  The Genetical Theory of Natural Selection , 1931 .

[115]  David E. Goldberg,et al.  Learning Linkage , 1996, FOGA.

[116]  P. Feldman Evolution of sex , 1975, Nature.

[117]  Darrell Whitley,et al.  Genitor: a different genetic algorithm , 1988 .

[118]  Jim Smith,et al.  Evolving Software Test Data - GA's learn Self Expression , 1996, Evolutionary Computing, AISB Workshop.

[119]  Peter Ross,et al.  Fast Practical Evolutionary Timetabling , 1994, Evolutionary Computing, AISB Workshop.

[120]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[121]  Thomas Bäck,et al.  Intelligent Mutation Rate Control in Canonical Genetic Algorithms , 1996, ISMIS.

[122]  James E. Baker,et al.  Reducing Bias and Inefficienry in the Selection Algorithm , 1987, ICGA.

[123]  Ko-Hsin Liang,et al.  An Experimental Investigation of Self-Adaptation in Evolutionary Programming , 1998, Evolutionary Programming.

[124]  J. David Schaffer,et al.  An Adaptive Crossover Distribution Mechanism for Genetic Algorithms , 1987, ICGA.

[125]  Jim E. Smith Self adaptation in evolutionary algorithms , 1998 .

[126]  Terry Jones,et al.  Fitness Distance Correlation as a Measure of Problem Difficulty for Genetic Algorithms , 1995, ICGA.

[127]  Mikhail A. Semenov Convergence Velocity Of Evolutionary Algorithm With Self-adaptation , 2002, GECCO.

[128]  John J. Grefenstette,et al.  Optimization of Control Parameters for Genetic Algorithms , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[129]  J. David Schaffer,et al.  Proceedings of the third international conference on Genetic algorithms , 1989 .

[130]  Marc Toussaint,et al.  Neutrality and self-adaptation , 2003, Natural Computing.

[131]  Xin Yao,et al.  Fast Evolutionary Programming , 1996, Evolutionary Programming.

[132]  Jim Smith,et al.  Parameter Perturbation Mechanisms in Binary Coded GAs with Self-Adaptive Mutation , 2002, FOGA.

[133]  Xin Yao,et al.  Evolutionary programming using mutations based on the Levy probability distribution , 2004, IEEE Transactions on Evolutionary Computation.

[134]  Kenneth A. De Jong,et al.  A formal analysis of the role of multi-point crossover in genetic algorithms , 1992, Annals of Mathematics and Artificial Intelligence.

[135]  Reinhard Männer,et al.  Towards an Optimal Mutation Probability for Genetic Algorithms , 1990, PPSN.

[136]  Jim Smith,et al.  Adaptively Parameterised Evolutionary Systems: Self-Adaptive Recombination and Mutation in a Genetic Algorithm , 1996, PPSN.

[137]  Stuart A. Kauffman,et al.  ORIGINS OF ORDER , 2019, Origins of Order.

[138]  John H. Holland,et al.  Outline for a Logical Theory of Adaptive Systems , 1962, JACM.

[139]  Hillol Kargupta,et al.  The Gene Expression Messy Genetic Algorithm , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[140]  Tony White,et al.  Adaptive Crossover Using Automata , 1994, PPSN.

[141]  Hans-Paul Schwefel,et al.  Numerical Optimization of Computer Models , 1982 .

[142]  Zbigniew Michalewicz,et al.  Parameter Control in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[143]  Joanna Lis,et al.  Parallel genetic algorithm with the dynamic control parameter , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.