Coupled-cluster methods with internal and semi-internal triply and quadruply excited clusters: CCSDt and CCSDtq approaches

Extension of the closed-shell coupled-cluster (CC) theory to studies of bond breaking and general quasidegenerate situations requires the inclusion of the connected triply and quadruply excited clusters, T3 and T4, respectively. Since the complete inclusion of these clusters is expensive, we explore the possibility of incorporating dominant T3 and T4 contributions by limiting them to active orbitals. We restrict T3 and T4 clusters to internal or internal and semi-internal components using arguments originating from the multireference formalism. A hierarchy of approximations to standard CCSDT (CC singles, doubles, and triples) and CCSDTQ (CC singles, doubles, triples, and quadruples) schemes, designated as the CCSDt and CCSDtq approaches, is proposed and tested using the H2O and HF molecules at displaced nuclear geometries and C2 at the equilibrium geometry. It is demonstrated that the CCSDt and CCSDtq methods provide an excellent description of bond breaking and nondynamic correlation effects. Unlike pert...

[1]  R. Bartlett,et al.  An efficient way to include connected quadruple contributions into the coupled cluster method , 1998 .

[2]  R. Bartlett,et al.  The full CCSDT model for molecular electronic structure , 1987 .

[3]  P. Piecuch,et al.  Electron correlation in one dimension: Coupled cluster approaches to cyclic polyene π-electron models , 1992 .

[4]  J. Cizek On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods , 1966 .

[5]  Approximate account of connected quadruply excited clusters in multi-reference Hilbert space coupled-cluster theory. Application to planar H4 models , 1993 .

[6]  J. Paldus,et al.  Reduced multireference couple cluster method. II. Application to potential energy surfaces of HF, F2, and H2O , 1998 .

[7]  Rodney J. Bartlett,et al.  Sixth-order energy corrections with converged coupled cluster singles and doubles amplitudes , 1998 .

[8]  D R Yarkony,et al.  Modern electronic structure theory , 1995 .

[9]  Rodney J. Bartlett,et al.  Convergence of the coupled-cluster singles, doubles and triples method , 1988 .

[10]  P. Piecuch,et al.  Improved computational strategy for the state‐selective coupled‐cluster theory with semi‐internal triexcited clusters: Potential energy surface of the HF molecule , 1995 .

[11]  L. Adamowicz Optimized second‐order correlation orbital manifold for single excitations in the coupled‐cluster method , 1991 .

[12]  Ludwik Adamowicz,et al.  STATE-SELECTIVE MULTIREFERENCE COUPLED-CLUSTER THEORY EMPLOYING THE SINGLE-REFERENCE FORMALISM : IMPLEMENTATION AND APPLICATION TO THE H8 MODEL SYSTEM , 1994 .

[13]  J. Paldus,et al.  Externally corrected singles and doubles coupled cluster methods for open-shell systems , 1997 .

[14]  Krishnan Raghavachari,et al.  An augmented coupled cluster method and its application to the first‐row homonuclear diatomics , 1985 .

[15]  C. Bauschlicher,et al.  Benchmark full configuration-interaction calculations on HF and NH2 , 1986 .

[16]  Clifford E. Dykstra,et al.  Advanced theories and computational approaches to the electronic structure of molecules , 1984 .

[17]  J. Olsen,et al.  Excitation energies of H2O, N2 and C2 in full configuration interaction and coupled cluster theory , 1996 .

[18]  Piecuch,et al.  Approximate account of connected quadruply excited clusters in single-reference coupled-cluster theory via cluster analysis of the projected unrestricted Hartree-Fock wave function. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[19]  R. Bartlett,et al.  Erratum: A coupled cluster approach with triple excitations [J. Chem. Phys. 81, 5906 (1984)] , 1985 .

[20]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[21]  I. Lindgren,et al.  On the connectivity criteria in the open-shell coupled-cluster theory for general model spaces , 1987 .

[22]  P. Piecuch,et al.  BREAKING BONDS WITH THE STATE-SELECTIVE MULTIREFERENCE COUPLED-CLUSTER METHOD EMPLOYING THE SINGLE-REFERENCE FORMALISM , 1995 .

[23]  Ingvar Lindgren,et al.  Atomic Many-Body Theory , 1982 .

[24]  M. Klobukowski,et al.  Self-consistent field : theory and applications , 1990 .

[25]  Josef Paldus,et al.  Stability Conditions for the Solutions of the Hartree—Fock Equations for Atomic and Molecular Systems. Application to the Pi‐Electron Model of Cyclic Polyenes , 1967 .

[26]  L. Stolarczyk Complete active space coupled-cluster method. Extension of single-reference coupled-cluster method using the CASSCF wavefunction , 1994 .

[27]  R. Bartlett,et al.  A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples , 1982 .

[28]  Trygve Helgaker,et al.  Multiple basis sets in calculations of triples corrections in coupled-cluster theory , 1997 .

[29]  R. Bartlett,et al.  The coupled‐cluster single, double, and triple excitation model for open‐shell single reference functions , 1990 .

[30]  Josef Paldus,et al.  Approximate account of the connected quadruply excited clusters in the coupled-pair many-electron theory , 1984 .

[31]  F. Coester,et al.  Short-range correlations in nuclear wave functions , 1960 .

[32]  Ludwik Adamowicz,et al.  The state-selective coupled cluster method for quasi-degenerate electronic states , 1998 .

[33]  Ludwik Adamowicz,et al.  The implementation of the multireference coupled‐cluster method based on the single‐reference formalism , 1992 .

[34]  Rodney J. Bartlett,et al.  Molecular Applications of Coupled Cluster and Many-Body Perturbation Methods , 1980 .

[35]  Josef Paldus,et al.  Coupled cluster approaches with an approximate account of triexcitations and the optimized inner projection technique , 1990, Physical review. B, Condensed matter.

[36]  R. Bartlett,et al.  Coupled-cluster methods that include connected quadruple excitations, T4: CCSDTQ-1 and Q(CCSDT) , 1989 .

[37]  Josef Paldus,et al.  Coupled Cluster Theory , 1992 .

[38]  R. Bartlett,et al.  The description of N2 and F2 potential energy surfaces using multireference coupled cluster theory , 1987 .

[39]  State-selective multi-reference coupled-cluster theory using multi-configuration self-consistent-field orbitals. A model study on H8 , 1994 .

[40]  Ludwik Adamowicz,et al.  A state-selective multireference coupled-cluster theory employing the single-reference formalism , 1993 .

[41]  R. Bartlett Many-Body Perturbation Theory and Coupled Cluster Theory for Electron Correlation in Molecules , 1981 .

[42]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[43]  P. Piecuch,et al.  Coupled‐Cluster approaches with an approximate account of triply and quadruply excited clusters: Implementation of the orthogonally spin‐adapted CCD + ST(CCD), CCSD + T(CCSD), and ACPQ + ST(ACPQ) formalisms , 1995 .

[44]  H. Monkhorst,et al.  Coupled-cluster method for multideterminantal reference states , 1981 .

[45]  J. Paldus,et al.  Valence universal exponential ansatz and the cluster structure of multireference configuration interaction wave function , 1989 .

[46]  R. Bartlett,et al.  Triple excitations in coupled‐cluster theory: Energies and analytical derivatives , 1993 .

[47]  G. Scuseria,et al.  Analytic evaluation of energy gradients for the single, double and linearized triple excitation coupled-cluster CCSDT-1 wavefunction: Theory and applications , 1988 .

[48]  R. Bartlett,et al.  Optimized virtual orbital space for high‐level correlated calculations. II. Electric properties , 1988 .

[49]  Anna I. Krylov,et al.  Size-consistent wave functions for nondynamical correlation energy: The valence active space optimized orbital coupled-cluster doubles model , 1998 .

[50]  P. Löwdin,et al.  New Horizons of Quantum Chemistry , 1983 .

[51]  Rodney J. Bartlett,et al.  Selection of the reduced virtual space for correlated calculations. An application to the energy and dipole moment of H2O , 1989 .

[52]  R. Bartlett,et al.  The coupled‐cluster single, double, triple, and quadruple excitation method , 1992 .

[53]  John F. Stanton,et al.  The ACES II program system , 1992 .

[54]  S. J. Cole,et al.  Comparison of MBPT and coupled cluster methods with full CI. II. Polarized basis sets , 1987 .

[55]  Josef Paldus,et al.  Correlation problems in atomic and molecular systems. V. Spin‐adapted coupled cluster many‐electron theory , 1977 .

[56]  K. Kowalski,et al.  Approximate coupled cluster methods based on a split-amplitude strategy , 1996 .

[57]  Nevin Horace Oliphant,et al.  A multireference coupled-cluster method using a single-reference formalism. , 1991 .

[58]  P. Piecuch,et al.  Molecular quadrupole moment functions of HF and N2. I. Ab initio linear‐response coupled‐cluster results , 1996 .

[59]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[60]  Jürgen Gauss,et al.  Coupled‐cluster methods with noniterative triple excitations for restricted open‐shell Hartree–Fock and other general single determinant reference functions. Energies and analytical gradients , 1993 .

[61]  J. Paldus,et al.  Valence bond corrected single reference coupled cluster approach , 1994 .

[62]  P. Piecuch,et al.  State‐selective multireference coupled‐cluster theory: In pursuit of property calculation , 1996 .

[63]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[64]  Rodney J. Bartlett,et al.  Noniterative energy corrections through fifth-order to the coupled cluster singles and doubles method , 1998 .

[65]  Uttam Sinha Mahapatra,et al.  A state-specific multi-reference coupled cluster formalism with molecular applications , 1998 .

[66]  R. Bartlett,et al.  Recursive intermediate factorization and complete computational linearization of the coupled-cluster single, double, triple, and quadruple excitation equations , 1991 .

[67]  John D. Watts,et al.  Non-iterative fifth-order triple and quadruple excitation energy corrections in correlated methods , 1990 .

[68]  J. Paldus,et al.  Single‐reference CCSD approach employing three‐ and four‐body CAS SCF corrections: A preliminary study of a simple model , 1997 .

[69]  S. Pal,et al.  Use of Cluster Expansion Methods in the Open-Shell Correlation Problem , 1989 .

[70]  J. Malrieu,et al.  State‐specific coupled cluster‐type dressing of multireference singles and doubles configuration interaction matrix , 1996 .

[71]  N. Oliphant,et al.  Coupled‐cluster method truncated at quadruples , 1991 .

[72]  Henry F. Schaefer,et al.  A new implementation of the full CCSDT model for molecular electronic structure , 1988 .