Derivation conditions impact X-inactivation status in female human induced pluripotent stem cells.

[1]  K. Eggan,et al.  Erosion of dosage compensation impacts human iPSC disease modeling. , 2012, Cell stem cell.

[2]  Jeannie T. Lee,et al.  X-chromosome hyperactivation in mammals via nonlinear relationships between chromatin states and transcription , 2011, Nature Structural &Molecular Biology.

[3]  Joseph B Hiatt,et al.  Evidence for compensatory upregulation of expressed X-linked genes in mammals, Caenorhabditis elegans and Drosophila melanogaster , 2011, Nature Genetics.

[4]  B. Turner,et al.  Relative overexpression of X-linked genes in mouse embryonic stem cells is consistent with Ohno's hypothesis , 2011, Nature Genetics.

[5]  H. Vaziri,et al.  Suppression of the Imprinted Gene NNAT and X-Chromosome Gene Activation in Isogenic Human iPS Cells , 2011, PloS one.

[6]  O. Dreesen,et al.  Unexpected X chromosome skewing during culture and reprogramming of human somatic cells can be alleviated by exogenous telomerase. , 2011, Cell stem cell.

[7]  Kun-Yong Kim,et al.  Neuronal maturation defect in induced pluripotent stem cells from patients with Rett syndrome , 2011, Proceedings of the National Academy of Sciences.

[8]  G. Fan,et al.  X chromosome inactivation in human and mouse pluripotent stem cells , 2011, Human Genetics.

[9]  Jeannie T. Lee,et al.  X-inactivation and X-reactivation: epigenetic hallmarks of mammalian reproduction and pluripotent stem cells , 2011, Human Genetics.

[10]  Yasuko Matsumura,et al.  A more efficient method to generate integration-free human iPS cells , 2011, Nature Methods.

[11]  E. Heard,et al.  Eutherian mammals use diverse strategies to initiate X-chromosome inactivation during development , 2011, Nature.

[12]  R. Weksberg,et al.  Isolation of MECP2-null Rett Syndrome patient hiPS cells and isogenic controls through X-chromosome inactivation , 2011, Human molecular genetics.

[13]  N. Benvenisty,et al.  Meta-analysis of the heterogeneity of X chromosome inactivation in human pluripotent stem cells. , 2011, Stem cell research.

[14]  Fred H. Gage,et al.  A Model for Neural Development and Treatment of Rett Syndrome Using Human Induced Pluripotent Stem Cells , 2010, Cell.

[15]  K. Plath,et al.  Female human iPSCs retain an inactive X chromosome. , 2010, Cell stem cell.

[16]  K. Hochedlinger,et al.  Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells , 2010, Nature Biotechnology.

[17]  C. Lengner,et al.  Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs , 2010, Proceedings of the National Academy of Sciences.

[18]  Jennifer A. Erwin,et al.  Derivation of Pre-X Inactivation Human Embryonic Stem Cells under Physiological Oxygen Concentrations , 2010, Cell.

[19]  Evgeny A. Glazov,et al.  Induction of pluripotency in human endothelial cells resets epigenetic profile on genome scale , 2010, Cell cycle.

[20]  Shinya Yamanaka,et al.  Human Induced Pluripotent Stem Cells on Autologous Feeders , 2009, PloS one.

[21]  I. Jonkers,et al.  X chromosome inactivation is initiated in human preimplantation embryos. , 2009, American journal of human genetics.

[22]  J. Nichols,et al.  Naive and primed pluripotent states. , 2009, Cell stem cell.

[23]  Paul Pavlidis,et al.  Histone deacetylase inhibition elicits an evolutionarily conserved self-renewal program in embryonic stem cells. , 2009, Cell stem cell.

[24]  R. Rowntree,et al.  X-chromosome inactivation and epigenetic fluidity in human embryonic stem cells , 2008, Proceedings of the National Academy of Sciences.

[25]  M. Pellegrini,et al.  X-inactivation in female human embryonic stem cells is in a nonrandom pattern and prone to epigenetic alterations , 2008, Proceedings of the National Academy of Sciences.

[26]  R. Young,et al.  Stem Cells, the Molecular Circuitry of Pluripotency and Nuclear Reprogramming , 2008, Cell.

[27]  B. Thiers Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors , 2008 .

[28]  Takashi Aoi,et al.  Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts , 2008, Nature Biotechnology.

[29]  Jeannie T. Lee,et al.  Dosage Compensation in the Mouse Balances Up-Regulation and Silencing of X-Linked Genes , 2007, PLoS biology.

[30]  T. Ichisaka,et al.  Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors , 2007, Cell.

[31]  J. Utikal,et al.  Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. , 2007, Cell stem cell.

[32]  C. Disteche,et al.  Dosage compensation in mammals: fine-tuning the expression of the X chromosome. , 2006, Genes & development.

[33]  Christine M Disteche,et al.  Dosage compensation of the active X chromosome in mammals , 2006, Nature Genetics.

[34]  J. Lawrence,et al.  X‐Inactivation Status Varies in Human Embryonic Stem Cell Lines , 2005, Stem cells.

[35]  H. Willard,et al.  X-inactivation profile reveals extensive variability in X-linked gene expression in females , 2005, Nature.

[36]  J. Moreau,et al.  The Mannose 6-Phosphate/Insulin-like Growth Factor II Receptor Is a Nanomolar Affinity Receptor for Glycosylated Human Leukemia Inhibitory Factor* , 1998, The Journal of Biological Chemistry.

[37]  Carolyn J. Brown,et al.  The human X-inactivation centre is not required for maintenance of X-chromosome inactivation , 1994, Nature.

[38]  Andrew P. McMahon,et al.  The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain , 1990, Cell.