Breast Cancer Risk and 6q22.33: Combined Results from Breast Cancer Association Consortium and Consortium of Investigators on Modifiers of BRCA1/2

Recently, a locus on chromosome 6q22.33 (rs2180341) was reported to be associated with increased breast cancer risk in the Ashkenazi Jewish (AJ) population, and this association was also observed in populations of non-AJ European ancestry. In the present study, we performed a large replication analysis of rs2180341 using data from 31,428 invasive breast cancer cases and 34,700 controls collected from 25 studies in the Breast Cancer Association Consortium (BCAC). In addition, we evaluated whether rs2180341 modifies breast cancer risk in 3,361 BRCA1 and 2,020 BRCA2 carriers from 11 centers in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Based on the BCAC data from women of European ancestry, we found evidence for a weak association with breast cancer risk for rs2180341 (per-allele odds ratio (OR) = 1.03, 95% CI 1.00–1.06, p = 0.023). There was evidence for heterogeneity in the ORs among studies (I2 = 49.3%; p = <0.004). In CIMBA, we observed an inverse association with the minor allele of rs2180341 and breast cancer risk in BRCA1 mutation carriers (per-allele OR = 0.89, 95%CI 0.80–1.00, p = 0.048), indicating a potential protective effect of this allele. These data suggest that that 6q22.33 confers a weak effect on breast cancer risk.

S. Seal | N. Rahman | D. Noh | C. Vachon | J. Olson | F. Couch | J. Chang-Claude | J. Benítez | R. Eeles | G. Giles | G. Severi | J. Hopper | A. Spurdle | M. Southey | A. Cox | D. Easton | Chen-Yang Shen | A. Broeks | P. Pharoah | D. Lambrechts | J. Peto | E. Khusnutdinova | K. Offit | A. Antoniou | N. Loman | H. Brauch | P. Hillemanns | B. Agnarsson | A. Dunning | D. Eccles | D. Evans | O. Fletcher | N. Johnson | G. Chenevix-Trench | S. Bojesen | B. Nordestgaard | H. Nevanlinna | D. Kang | K. Yoo | S. Ahn | N. Bogdanova | P. Schürmann | R. Tollenaar | P. Devilee | I. Brock | R. Milne | U. Hamann | Y. Ko | J. Beesley | Xiaoqing Chen | A. Mannermaa | V. Kosma | V. Kataja | T. Kirchhoff | B. Gold | K. Nathanson | A. Lindblom | M. Schmidt | C. Turnbull | L. Gibson | A. Meindl | C. Luccarini | H. Flyger | Xianshu Wang | T. Heikkinen | B. Burwinkel | M. P. Zamora | M. Reed | I. Andrulis | S. Margolin | M. Hooning | L. Baglietto | C. Seynaeve | N. Antonenkova | Chia-Ni Hsiung | A. Renwick | C. V. van Asperen | M. Bermisheva | S. Wang-gohrke | L. McGuffog | A. Godwin | S. Domchek | Z. Fredericksen | N. Lindor | S. Peock | M. Cook | C. Oliver | D. Frost | F. Hogervorst | M. Ligtenberg | M. Humphreys | J. Karstens | R. Oldenburg | G. Elliott | Jyh‐cherng Yu | S. Hodgson | M. Ausems | A. Dieudonné | P. Karlsson | B. Melin | M. Rookus | C. Aalfs | G. Pichert | M. Gaudet | R. Davidson | S. Healey | M. Caligo | J. Wijnen | J. Cook | F. Douglas | Hebon | Embrace | K. Ong | H. Gille | Helene Holland | S. Hatse | C. Chu | J. Arias | M. S. Askmalm | Aocs Group | Manjeet K. Humphreys | kConFab | M. Verheus | T. Dork | F. Hammet | Linde M. Braaf | A. von Wachenfeldt | J. Kauppinen | L. J. van ’t Veer | Pei‐Ei Wu | E. G. Gómez Garcia | Swe-Brca | Thijs Van Dorpe | Juri I. Rogov | D. Prokofieva | J. Cook | A. Dieudonne | Graeme C. Elliott | D. Evans

[1]  Wenqing Xu,et al.  Recognition of the iso-ADP-ribose moiety in poly(ADP-ribose) by WWE domains suggests a general mechanism for poly(ADP-ribosyl)ation-dependent ubiquitination. , 2012, Genes & development.

[2]  Hongbing Shen,et al.  Breast cancer risk assessment with five independent genetic variants and two risk factors in Chinese women , 2012, Breast Cancer Research.

[3]  Patrick Neven,et al.  Low penetrance breast cancer susceptibility loci are associated with specific breast tumor subtypes: findings from the Breast Cancer Association Consortium. , 2011, Human molecular genetics.

[4]  David P. Davis,et al.  Ubiquitin Ligase RNF146 Regulates Tankyrase and Axin to Promote Wnt Signaling , 2011, PloS one.

[5]  A. Bauer,et al.  RNF146 is a poly(ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling , 2011, Nature Cell Biology.

[6]  T. Meitinger,et al.  Low‐risk variants FGFR2, TNRC9 and LSP1 in German familial breast cancer patients , 2010, International journal of cancer.

[7]  Eva Dizin,et al.  Negative feedback loop of BRCA1-BARD1 ubiquitin ligase on estrogen receptor alpha stability and activity antagonized by cancer-associated isoform of BARD1. , 2010, The international journal of biochemistry & cell biology.

[8]  P. Gregersen,et al.  The 6q22.33 Locus and Breast Cancer Susceptibility , 2009, Cancer Epidemiology, Biomarkers & Prevention.

[9]  M. Beckmann,et al.  Risk of estrogen receptor-positive and -negative breast cancer and single-nucleotide polymorphism 2q35-rs13387042. , 2009, Journal of the National Cancer Institute.

[10]  M. Beckmann,et al.  Five Polymorphisms and Breast Cancer Risk: Results from the Breast Cancer Association Consortium , 2009, Cancer Epidemiology Biomarkers & Prevention.

[11]  W. Willett,et al.  A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 (RAD51L1) , 2009, Nature Genetics.

[12]  M. Thun,et al.  Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2 , 2009, Nature Genetics.

[13]  Julian Peto,et al.  Association of ESR1 gene tagging SNPs with breast cancer risk. , 2009, Human molecular genetics.

[14]  J. Haines,et al.  Genome-wide association study identifies a novel breast cancer susceptibility locus at 6q25.1 , 2009, Nature Genetics.

[15]  P. Gregersen,et al.  Genome-wide association study provides evidence for a breast cancer risk locus at 6q22.33 , 2008, Proceedings of the National Academy of Sciences.

[16]  D. Gudbjartsson,et al.  Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor–positive breast cancer , 2007, Nature Genetics.

[17]  Lester L. Peters,et al.  Genome-wide association study identifies novel breast cancer susceptibility loci , 2007, Nature.

[18]  W. Willett,et al.  A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer , 2007, Nature Genetics.

[19]  Eden R Martin,et al.  No gene is an island: the flip-flop phenomenon. , 2007, American journal of human genetics.

[20]  J. Chang-Claude,et al.  A weighted cohort approach for analysing factors modifying disease risks in carriers of high‐risk susceptibility genes , 2005, Genetic epidemiology.

[21]  D. Altman,et al.  Measuring inconsistency in meta-analyses , 2003, BMJ : British Medical Journal.

[22]  S. Thompson,et al.  Quantifying heterogeneity in a meta‐analysis , 2002, Statistics in medicine.

[23]  W. Willett,et al.  A genome-wide association study identifies alleles in FGFR 2 associated with risk of sporadic postmenopausal breast cancer , 2012 .

[24]  S. Fuqua,et al.  BRCA1 regulates acetylation and ubiquitination of estrogen receptor-alpha. , 2010, Molecular endocrinology.

[25]  P. Gregersen,et al.  The 6 q 22 . 33 Locus and Breast Cancer Susceptibility , 2009 .

[26]  M. Beckmann,et al.  Association of ESR 1 gene tagging SNPs with breast cancer risk , 2009 .

[27]  Nathaniel Rothman,et al.  Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. , 2004, Journal of the National Cancer Institute.