Breast Cancer Risk and 6q22.33: Combined Results from Breast Cancer Association Consortium and Consortium of Investigators on Modifiers of BRCA1/2
暂无分享,去创建一个
S. Seal | N. Rahman | D. Noh | C. Vachon | J. Olson | F. Couch | J. Chang-Claude | J. Benítez | R. Eeles | G. Giles | G. Severi | J. Hopper | A. Spurdle | M. Southey | A. Cox | D. Easton | Chen-Yang Shen | A. Broeks | P. Pharoah | D. Lambrechts | J. Peto | E. Khusnutdinova | K. Offit | A. Antoniou | N. Loman | H. Brauch | P. Hillemanns | B. Agnarsson | A. Dunning | D. Eccles | D. Evans | O. Fletcher | N. Johnson | G. Chenevix-Trench | S. Bojesen | B. Nordestgaard | H. Nevanlinna | D. Kang | K. Yoo | S. Ahn | N. Bogdanova | P. Schürmann | R. Tollenaar | P. Devilee | I. Brock | R. Milne | U. Hamann | Y. Ko | J. Beesley | Xiaoqing Chen | A. Mannermaa | V. Kosma | V. Kataja | T. Kirchhoff | B. Gold | K. Nathanson | A. Lindblom | M. Schmidt | C. Turnbull | L. Gibson | A. Meindl | C. Luccarini | H. Flyger | Xianshu Wang | T. Heikkinen | B. Burwinkel | M. P. Zamora | M. Reed | I. Andrulis | S. Margolin | M. Hooning | L. Baglietto | C. Seynaeve | N. Antonenkova | Chia-Ni Hsiung | A. Renwick | C. V. van Asperen | M. Bermisheva | S. Wang-gohrke | L. McGuffog | A. Godwin | S. Domchek | Z. Fredericksen | N. Lindor | S. Peock | M. Cook | C. Oliver | D. Frost | F. Hogervorst | M. Ligtenberg | M. Humphreys | J. Karstens | R. Oldenburg | G. Elliott | Jyh‐cherng Yu | S. Hodgson | M. Ausems | A. Dieudonné | P. Karlsson | B. Melin | M. Rookus | C. Aalfs | G. Pichert | M. Gaudet | R. Davidson | S. Healey | M. Caligo | J. Wijnen | J. Cook | F. Douglas | Hebon | Embrace | K. Ong | H. Gille | Helene Holland | S. Hatse | C. Chu | J. Arias | M. S. Askmalm | Aocs Group | Manjeet K. Humphreys | kConFab | M. Verheus | T. Dork | F. Hammet | Linde M. Braaf | A. von Wachenfeldt | J. Kauppinen | L. J. van ’t Veer | Pei‐Ei Wu | E. G. Gómez Garcia | Swe-Brca | Thijs Van Dorpe | Juri I. Rogov | D. Prokofieva | J. Cook | A. Dieudonne | Graeme C. Elliott | D. Evans
[1] Wenqing Xu,et al. Recognition of the iso-ADP-ribose moiety in poly(ADP-ribose) by WWE domains suggests a general mechanism for poly(ADP-ribosyl)ation-dependent ubiquitination. , 2012, Genes & development.
[2] Hongbing Shen,et al. Breast cancer risk assessment with five independent genetic variants and two risk factors in Chinese women , 2012, Breast Cancer Research.
[3] Patrick Neven,et al. Low penetrance breast cancer susceptibility loci are associated with specific breast tumor subtypes: findings from the Breast Cancer Association Consortium. , 2011, Human molecular genetics.
[4] David P. Davis,et al. Ubiquitin Ligase RNF146 Regulates Tankyrase and Axin to Promote Wnt Signaling , 2011, PloS one.
[5] A. Bauer,et al. RNF146 is a poly(ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling , 2011, Nature Cell Biology.
[6] T. Meitinger,et al. Low‐risk variants FGFR2, TNRC9 and LSP1 in German familial breast cancer patients , 2010, International journal of cancer.
[7] Eva Dizin,et al. Negative feedback loop of BRCA1-BARD1 ubiquitin ligase on estrogen receptor alpha stability and activity antagonized by cancer-associated isoform of BARD1. , 2010, The international journal of biochemistry & cell biology.
[8] P. Gregersen,et al. The 6q22.33 Locus and Breast Cancer Susceptibility , 2009, Cancer Epidemiology, Biomarkers & Prevention.
[9] M. Beckmann,et al. Risk of estrogen receptor-positive and -negative breast cancer and single-nucleotide polymorphism 2q35-rs13387042. , 2009, Journal of the National Cancer Institute.
[10] M. Beckmann,et al. Five Polymorphisms and Breast Cancer Risk: Results from the Breast Cancer Association Consortium , 2009, Cancer Epidemiology Biomarkers & Prevention.
[11] W. Willett,et al. A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 (RAD51L1) , 2009, Nature Genetics.
[12] M. Thun,et al. Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2 , 2009, Nature Genetics.
[13] Julian Peto,et al. Association of ESR1 gene tagging SNPs with breast cancer risk. , 2009, Human molecular genetics.
[14] J. Haines,et al. Genome-wide association study identifies a novel breast cancer susceptibility locus at 6q25.1 , 2009, Nature Genetics.
[15] P. Gregersen,et al. Genome-wide association study provides evidence for a breast cancer risk locus at 6q22.33 , 2008, Proceedings of the National Academy of Sciences.
[16] D. Gudbjartsson,et al. Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor–positive breast cancer , 2007, Nature Genetics.
[17] Lester L. Peters,et al. Genome-wide association study identifies novel breast cancer susceptibility loci , 2007, Nature.
[18] W. Willett,et al. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer , 2007, Nature Genetics.
[19] Eden R Martin,et al. No gene is an island: the flip-flop phenomenon. , 2007, American journal of human genetics.
[20] J. Chang-Claude,et al. A weighted cohort approach for analysing factors modifying disease risks in carriers of high‐risk susceptibility genes , 2005, Genetic epidemiology.
[21] D. Altman,et al. Measuring inconsistency in meta-analyses , 2003, BMJ : British Medical Journal.
[22] S. Thompson,et al. Quantifying heterogeneity in a meta‐analysis , 2002, Statistics in medicine.
[23] W. Willett,et al. A genome-wide association study identifies alleles in FGFR 2 associated with risk of sporadic postmenopausal breast cancer , 2012 .
[24] S. Fuqua,et al. BRCA1 regulates acetylation and ubiquitination of estrogen receptor-alpha. , 2010, Molecular endocrinology.
[25] P. Gregersen,et al. The 6 q 22 . 33 Locus and Breast Cancer Susceptibility , 2009 .
[26] M. Beckmann,et al. Association of ESR 1 gene tagging SNPs with breast cancer risk , 2009 .
[27] Nathaniel Rothman,et al. Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. , 2004, Journal of the National Cancer Institute.