A molecular dynamics approach to the structural characterization of amyloid aggregation.

[1]  Gerhard Hummer,et al.  Molecular dynamics simulations of Alzheimer's β-amyloid protofilaments , 2005 .

[2]  Amedeo Caflisch,et al.  Prediction of aggregation rate and aggregation‐prone segments in polypeptide sequences , 2005, Protein science : a publication of the Protein Society.

[3]  L. Serrano,et al.  Sequence dependence of amyloid fibril formation: insights from molecular dynamics simulations. , 2005, Journal of molecular biology.

[4]  Robert A. Grothe,et al.  Structure of the cross-β spine of amyloid-like fibrils , 2005, Nature.

[5]  Ueli Aebi,et al.  The parallel superpleated beta-structure as a model for amyloid fibrils of human amylin. , 2005, Journal of molecular biology.

[6]  Y. Duan,et al.  The role of Phe in the formation of well-ordered oligomers of amyloidogenic hexapeptide (NFGAIL) observed in molecular dynamics simulations with explicit solvent. , 2005, Biophysical journal.

[7]  P. Axelsen,et al.  β Sheet Structure in Amyloid β Fibrils and Vibrational Dipolar Coupling , 2005 .

[8]  Ralf Langen,et al.  Identifying Structural Features of Fibrillar Islet Amyloid Polypeptide Using Site-directed Spin Labeling* , 2004, Journal of Biological Chemistry.

[9]  F. Rao,et al.  Replica exchange molecular dynamics simulations of amyloid peptide aggregation. , 2004, The Journal of chemical physics.

[10]  L. Serrano,et al.  Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins , 2004, Nature Biotechnology.

[11]  Michele Vendruscolo,et al.  Prediction of the absolute aggregation rates of amyloidogenic polypeptide chains. , 2004, Journal of molecular biology.

[12]  A. Cavalli,et al.  The role of aromaticity, exposed surface, and dipole moment in determining protein aggregation rates , 2004, Protein science : a publication of the Protein Society.

[13]  Andrey V Kajava,et al.  A model for Ure2p prion filaments and other amyloids: the parallel superpleated beta-structure. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[14]  L. Lannfelt,et al.  Unique Physicochemical Profile of β-Amyloid Peptide Variant Aβ1–40E22G Protofibrils: Conceivable Neuropathogen in Arctic Mutant Carriers , 2004 .

[15]  P. Decottignies,et al.  Structural characterization of the fibrillar form of the yeast Saccharomyces cerevisiae prion Ure2p. , 2004, Biochemistry.

[16]  Ronald Wetzel,et al.  Seeding Specificity in Amyloid Growth Induced by Heterologous Fibrils* , 2004, Journal of Biological Chemistry.

[17]  A. Kishimoto,et al.  beta-Helix is a likely core structure of yeast prion Sup35 amyloid fibers. , 2004, Biochemical and biophysical research communications.

[18]  M. Citron Beta-secretase inhibition for the treatment of Alzheimer's disease--promise and challenge. , 2004, Trends in pharmacological sciences.

[19]  L. Serpell,et al.  Structural characterisation of islet amyloid polypeptide fibrils. , 2004, Journal of molecular biology.

[20]  J. Brewer,et al.  Solution NMR Studies of the Aβ(1−40) and Aβ(1−42) Peptides Establish that the Met35 Oxidation State Affects the Mechanism of Amyloid Formation , 2004 .

[21]  C. Dobson,et al.  High-resolution molecular structure of a peptide in an amyloid fibril determined by magic angle spinning NMR spectroscopy. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Ying Xu,et al.  Mapping abeta amyloid fibril secondary structure using scanning proline mutagenesis. , 2004, Journal of molecular biology.

[23]  Y. Lyubchenko,et al.  Residues 17–20 and 30–35 of beta‐amyloid play critical roles in aggregation , 2004, Journal of neuroscience research.

[24]  L. Serrano,et al.  Sequence determinants of amyloid fibril formation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[25]  C. Dobson Protein folding and misfolding , 2003, Nature.

[26]  C. Dobson,et al.  Rationalization of the effects of mutations on peptide andprotein aggregation rates , 2003, Nature.

[27]  A. Caflisch,et al.  The role of side-chain interactions in the early steps of aggregation: Molecular dynamics simulations of an amyloid-forming peptide from the yeast prion Sup35 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[28]  D. Thirumalai,et al.  Dissecting the Assembly of Aβ16–22 Amyloid Peptides into Antiparallel β Sheets , 2003 .

[29]  J. Kelly,et al.  Sequence-dependent denaturation energetics: A major determinant in amyloid disease diversity , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[30]  R. Leapman,et al.  Supramolecular structural constraints on Alzheimer's beta-amyloid fibrils from electron microscopy and solid-state nuclear magnetic resonance. , 2002, Biochemistry.

[31]  Andreas Hoenger,et al.  De novo designed peptide-based amyloid fibrils , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[32]  K. Higuchi,et al.  Amyloid fibril proteins , 2002, Mechanisms of Ageing and Development.

[33]  A. Horwich Protein aggregation in disease: a role for folding intermediates forming specific multimeric interactions. , 2002, The Journal of clinical investigation.

[34]  Ralf Langen,et al.  Structural and Dynamic Features of Alzheimer's Aβ Peptide in Amyloid Fibrils Studied by Site-directed Spin Labeling* , 2002, The Journal of Biological Chemistry.

[35]  Sharon Gilead,et al.  Identification and characterization of a novel molecular-recognition and self-assembly domain within the islet amyloid polypeptide. , 2002, Journal of molecular biology.

[36]  J. J. Balbach,et al.  Supramolecular Structure in Full-Length Alzheimer's β-Amyloid Fibrils: Evidence for a Parallel β-Sheet Organization from Solid-State Nuclear Magnetic Resonance , 2002 .

[37]  J. Straub,et al.  Charge states rather than propensity for β‐structure determine enhanced fibrillogenesis in wild‐type Alzheimer's β‐amyloid peptide compared to E22Q Dutch mutant , 2002 .

[38]  Christine Wurth,et al.  Mutations that reduce aggregation of the Alzheimer's Abeta42 peptide: an unbiased search for the sequence determinants of Abeta amyloidogenesis. , 2002, Journal of molecular biology.

[39]  Jörg Gsponer,et al.  Molecular dynamics simulations of protein folding from the transition state , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[40]  M. Perutz,et al.  Aggregation of proteins with expanded glutamine and alanine repeats of the glutamine-rich and asparagine-rich domains of Sup35 and of the amyloid β-peptide of amyloid plaques , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[41]  C. A. Andersen,et al.  Continuum secondary structure captures protein flexibility. , 2002, Structure.

[42]  C. Masters,et al.  Amyloid Fibril Protein Nomenclature - 2002 , 2002, Amyloid : the international journal of experimental and clinical investigation : the official journal of the International Society of Amyloidosis.

[43]  Ehud Gazit,et al.  A possible role for π‐stacking in the self‐assembly of amyloid fibrils , 2002, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[44]  R. Riek,et al.  NMR studies in aqueous solution fail to identify significant conformational differences between the monomeric forms of two Alzheimer peptides with widely different plaque-competence, A beta(1-40)(ox) and A beta(1-42)(ox). , 2001, European journal of biochemistry.

[45]  Claudio Zannoni,et al.  Molecular design and computer simulations of novel mesophases , 2001 .

[46]  S. Younkin,et al.  The 'Arctic' APP mutation (E693G) causes Alzheimer's disease by enhanced Aβ protofibril formation , 2001, Nature Neuroscience.

[47]  T. Yeates,et al.  Identification of a subunit interface in transthyretin amyloid fibrils: evidence for self-assembly from oligomeric building blocks. , 2001, Biochemistry.

[48]  O. Quarrell Glutamine repeats and neurodegenerative diseases: molecular aspects , 2001, Human Genetics.

[49]  A Caflisch,et al.  Role of native topology investigated by multiple unfolding simulations of four SH3 domains. , 2001, Journal of molecular biology.

[50]  Christopher M. Dobson,et al.  Amyloid fibrils from muscle myoglobin , 2001, Nature.

[51]  A Caflisch,et al.  Native topology or specific interactions: what is more important for protein folding? , 2001, Journal of molecular biology.

[52]  C. Dobson The structural basis of protein folding and its links with human disease. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[53]  Robert A. Grothe,et al.  An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated β-sheet structure for amyloid , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[54]  R. Leapman,et al.  Multiple quantum solid-state NMR indicates a parallel, not antiparallel, organization of β-sheets in Alzheimer's β-amyloid fibrils , 2000 .

[55]  Amedeo Caflisch,et al.  Free Energy Surface of the Helical Peptide Y(MEARA)6 , 2000 .

[56]  A. Caflisch,et al.  Folding simulations of a three-stranded antiparallel β-sheet peptide , 2000 .

[57]  D. M. Morgan,et al.  Structure of the β-Amyloid(10-35) Fibril , 2000 .

[58]  S. Radford,et al.  Partially unfolded states of beta(2)-microglobulin and amyloid formation in vitro. , 2000, Biochemistry.

[59]  T. Benzinger,et al.  Two-Dimensional Structure of β-Amyloid(10−35) Fibrils† , 2000 .

[60]  J. Bernhagen,et al.  Identification of a penta- and hexapeptide of islet amyloid polypeptide (IAPP) with amyloidogenic and cytotoxic properties. , 2000, Journal of molecular biology.

[61]  Y. Sugita,et al.  Replica-exchange molecular dynamics method for protein folding , 1999 .

[62]  M. Hecht,et al.  De novo amyloid proteins from designed combinatorial libraries. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[63]  C. Dobson Protein misfolding, evolution and disease. , 1999, Trends in biochemical sciences.

[64]  K. Murata,et al.  Amyloid‐like aggregates of a plant protein: a case of a sweet‐tasting protein, monellin , 1999, FEBS letters.

[65]  D. Selkoe,et al.  Translating cell biology into therapeutic advances in Alzheimer's disease , 1999, Nature.

[66]  T. Darden,et al.  An Atomic Model for the Pleated β-Sheet Structure of Aβ Amyloid Protofilaments , 1999 .

[67]  A. Komar,et al.  Structural Characterization of Saccharomyces cerevisiae Prion-like Protein Ure2* , 1999, The Journal of Biological Chemistry.

[68]  Sarah Tomlin,et al.  Microtechnology: Laying it on thick , 1999, Nature.

[69]  Laxmikant V. Kale,et al.  NAMD2: Greater Scalability for Parallel Molecular Dynamics , 1999 .

[70]  Lars Terenius,et al.  A Molecular Model of Alzheimer Amyloid β-Peptide Fibril Formation* , 1999, The Journal of Biological Chemistry.

[71]  R. Wickner,et al.  Prion domain initiation of amyloid formation in vitro from native Ure2p. , 1999, Science.

[72]  Elena Orlova,et al.  Cryo‐electron microscopy structure of an SH3 amyloid fibril and model of the molecular packing , 1999, The EMBO journal.

[73]  T. Benzinger,et al.  Propagating structure of Alzheimer’s β-amyloid(10–35) is parallel β-sheet with residues in exact register , 1998 .

[74]  H. King,et al.  Global Burden of Diabetes, 1995–2025: Prevalence, numerical estimates, and projections , 1998, Diabetes Care.

[75]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[76]  I D Campbell,et al.  Amyloid fibril formation by an SH3 domain. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[77]  R. Wickner,et al.  The prion model for [URE3] of yeast: spontaneous generation and requirements for propagation. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[78]  Louise C. Serpell,et al.  Synchrotron X-ray studies suggest that the core of the transthyretin amyloid fibril is a continuous β-sheet helix , 1996 .

[79]  M. Karplus,et al.  Simulation of activation free energies in molecular systems , 1996 .

[80]  L. Tjernberg,et al.  Arrest of -Amyloid Fibril Formation by a Pentapeptide Ligand (*) , 1996, The Journal of Biological Chemistry.

[81]  P. Pedersen,et al.  Defective protein folding as a basis of human disease. , 1995, Trends in biochemical sciences.

[82]  J. M. Griffiths,et al.  Rotational Resonance Solid-State NMR Elucidates a Structural Model of Pancreatic Amyloid , 1995 .

[83]  R. Wickner,et al.  [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. , 1994, Science.

[84]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[85]  B. Magasanik,et al.  Regulation of nitrogen assimilation in Saccharomyces cerevisiae: roles of the URE2 and GLN3 genes , 1988, Journal of bacteriology.

[86]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[87]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[88]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[89]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[90]  E. Wilander,et al.  The influence of amyloid deposits on the islet volume in maturity onset diabetes mellitus , 1978, Diabetologia.

[91]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[92]  P. Gennes,et al.  The physics of liquid crystals , 1974 .

[93]  F. Lacroute Non-Mendelian Mutation Allowing Ureidosuccinic Acid Uptake in Yeast , 1971, Journal of bacteriology.

[94]  Gerhard Hummer,et al.  Molecular dynamics simulations of Alzheimer's beta-amyloid protofilaments. , 2005, Journal of molecular biology.

[95]  R. Leapman,et al.  A structural model for Alzheimer's beta -amyloid fibrils based on experimental constraints from solid state NMR. , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[96]  J. Apostolakis,et al.  Evaluation of a fast implicit solvent model for molecular dynamics simulations , 2002, Proteins.

[97]  D. Kirschner,et al.  Structural analysis of Alzheimer's beta(1-40) amyloid: protofilament assembly of tubular fibrils. , 1998, Biophysical journal.

[98]  C. Blake,et al.  The structure of amyloid fibrils by electron microscopy and X-ray diffraction. , 1997, Advances in protein chemistry.

[99]  Akhlesh Lakhtakia,et al.  The physics of liquid crystals, 2nd edition: P.G. De Gennes and J. Prost, Published in 1993 by Oxford University Press, Oxford, UK, pp 7,597 + xvi, ISBN: 0-19-852024 , 1995 .

[100]  C. Brooks Computer simulation of liquids , 1989 .

[101]  W. H. Toliver,et al.  Liquid Crystals , 1912, Nature.