Analytical inductively coupled plasma spectroscopies — past, present, and future

ZusammenfassungDie analytische Plasmaspektroskopie hat eine breite Entwicklung genommen, denn eine Vielzahl von Plasmen erwies sich als nützlich für analytisch-spektroskopische Anwendungen. Von den heute interessierenden Plasmen haben nur die induktiv gekoppelten ihre Vielseitigkeit und ihre analytische Einsetzbarkeit als Atomisierungszelle für die Atomfluorescenz, als Anregungszelle für die Atomemissions- und als Ionisationszelle für die Massenspektroskopie bewiesen. Diese drei Arten der Beobachtung üben einen Haupteinfluß auf die Elementanalytik aus. Trotz ihres technischen und kommerziellen Erfolges bieten alle drei noch viel Gelegenheit für kreatives Forschen.Der Hauptantrieb, der hinter den fortgeführten Forschungsanstrengungen steht, ist der Wunsch nach immer größerer Richtigkeit und Präzision, nach noch höherem Nachweisvermögen, nach besseren Mitteln (Geräte und Programme), um Analysen bequemer, zuverlässiger und direkter durchführen zu können und die komplizierte Struktur sowie den Mechanismus des Plasmas selbst in grundlegender Weise besser zu verstehen. Die experimentellen Anordnungen, die benutzt werden, um diese Ziele zu erreichen, werden besprochen und bewertet. Die Anforderungen, die an den Analytiker durch die Natur der Probe und die gewünschte analytische Information gestellt werden, inspirieren ebenfalls zu Neuentwicklungen.SummaryPlasma analytical spectroscopy now has broad generic implications, because a variety of plasmas have been found useful for spectroscopic analytical applications. Among those of contemporary interest, only the inductively coupled versions have demonstrated their flexibility and analytical merit as atomization cells for atomic flourescence, as excitation cells for atomic emission and as ionization cells for mass spectroscopy. Collectively, these three modes of observation are exerting a major impact on the way elemental analyses are being performed. In spite of their technical and commercial success to date, all three approaches still present many opportunities for creative research. The major driving force behind continuing research efforts is the desire to attain even better accuracy and precision, to achieve even higher powers of detection, to improve the means (hardware and software) for performing analyses with more convenience, confidence and directness, and to better understand the complicated structure and mechanism of the plasma itself on a fundamental level. The experimental approaches being utilized to achieve these goals are reviewed and evaluated. The demands being placed on the analyst by the nature of sample and the analytical information desired is also inspiring the development of major front and back-end innovations. Those innovations that are finding acceptance are critically reviewed.

[1]  W. J. Haas,et al.  Multielement detection limits and sample nebulization efficiencies of an improved ultrasonic nebulizer and a conventional pneumatic nebulizer in inductively coupled plasma-atomic emission spectrometry , 1977 .

[2]  G. Kirkbright,et al.  Optical emission spectrometry with an inductively coupled radiofrequency argon plasma source and sample introduction with a graphite rod electrothermal vaporisation device. Part I. Instrumental assembly and performance characteristics , 1978 .

[3]  E. Salin,et al.  Signal-to-noise ratio performance characteristics of an inductively coupled plasma , 1980 .

[4]  J. Winefordner,et al.  Atomic fluorescence spectrometry with inductively coupled plasma as excitation source and atomization cell , 1983 .

[5]  William F. Meggers,et al.  Tables of spectral-line intensities , 1961 .

[6]  J. Caruso,et al.  Microliter sample introduction into an inductively-coupled plasma by electrothermal carbon cup vaporization , 1982 .

[7]  T. Catterick Continuous internal standardisation with a sequential inductively coupled argon plasma system , 1984 .

[8]  Abduazimkhodjaev Aziz,et al.  Analysis of microamounts of biological samples by evaporation in a graphite furnace and inductively coupled plasma atomic emission spectroscopy , 1982 .

[9]  A. Montaser,et al.  Atomic Emission Spectrometry with a Skimmed Inductively Coupled AR Plasma , 1982 .

[10]  A. Lorber,et al.  Generalized internal reference method for simultaneous multichannel analysis , 1984 .

[11]  G. Hieftje,et al.  Analytical characteristics of a low-flow, low-power inductively coupled plasma , 1985 .

[12]  N. Omenetto,et al.  Laser excited analytical atomic and ionic fluorescence in flames, furnaces and inductively coupled plasmas—II. Fluorescence characteristics and detection limits for fourteen elements , 1984 .

[13]  J. Mermet,et al.  Theoretical Aspects and Design of a Low-Power, Low-Flow-Rate Torch in Inductively Coupled Plasma Atomic Emission Spectroscopy , 1984 .

[14]  R. Kniseley,et al.  Theoretical principles of internal standardization in analytical emission spectroscopy , 1968 .

[15]  M. L. Parsons,et al.  Atlas of Spectral Interferences in ICP Spectroscopy , 1980 .

[16]  J. Dean,et al.  Axial view of an inductively coupled plasma , 1985 .

[17]  G. Hieftje Mini, micro, and high-efficiency torches for the ICP - toys or tools? , 1983 .

[18]  N. Omenetto,et al.  Laser excited analytical atomic and ionic fluorescence in flames, furnaces and inductively coupled plasmas—I. General considerations , 1984 .

[19]  P. Boumans,et al.  Studies of an inductively-coupled high-frequency argon plasma for optical emisson spectrometry—II: Compromise conditions for simultaneous multielement analysis , 1975 .

[20]  V. Fassel,et al.  EMISSION SPECTROMETRIC DETECTION OF THE ELEMENTS AT THE NANOGRAM PER MILLILITER LEVEL USING INDUCTION-COUPLED PLASMA EXCITATION. , 1969 .

[21]  V. Fassel,et al.  Direct liquid sample introduction for flow injection analysis and liquid chromatography with inductively coupled argon plasma spectrometric detection , 1984 .

[22]  Herbert A. Laitinen,et al.  Editorial. The Seven Ages of an Analytical Method , 1973 .

[23]  Improved analytical performance in multichannel spectrometry by compensation of nonrandom signal fluctuations , 1984 .

[24]  Alan L. Gray,et al.  Inductively coupled argon plasma as an ion source for mass spectrometric determination of trace elements , 1980 .

[25]  S. Greenfield,et al.  High-pressure plasmas as spectroscopic emission sources , 1964 .

[26]  V. Fassel,et al.  Induction-Coupled Plasma Spectrometric Excitation Source. , 1965 .

[27]  N. Omenetto,et al.  Laser excited atomic and ionic non-resonance fluorescence detection limits for several elements in an argon inductively coupled plasma , 1984 .

[28]  G. Kirkbright,et al.  Optical emission spectrometry with an inductively coupled radiofrequency argon plasma source and direct sample introduction from a graphite rod , 1982 .

[29]  A. Montaser,et al.  Inductively coupled plasmas as atomization cells for atomic fluorescence spectrometry , 1976 .

[30]  H. Haraguchi,et al.  Simultaneous multielement analysis of microliter volumes of solution samples by inductively coupled plasma atomic emission spectrometry utilizing a graphite cup direct insertion technique , 1984 .

[31]  M. Ramsey,et al.  Correlated variance in simultaneous inductively coupled plasma atomic-emission spectrometry: its causes and correction by a parameter-related internal standard method , 1985 .

[32]  G. Kirkbright,et al.  Volatilisation of some elements from a graphite rod direct sample insertion device into an inductively coupled argon plasma for optical emission spectrometry , 1982 .

[33]  G. Horlick,et al.  Correlation study of internal standardization in inductively coupled plasma atomic emission spectrometry , 1982 .

[34]  F. Morel,et al.  Coulometric study of the redox dynamics of iron in seawater , 1984 .

[35]  A. Lorber,et al.  Application of the generalized internal reference method for the characterization of parameters causing drift in inductively-coupled plasma emission spectrometry , 1984 .

[36]  R. Barnes Inductively coupled plasma atomic emission spectroscopy: a review , 1981 .

[37]  H. Haraguchi,et al.  Simultaneous multi-element analysis by inductively-coupled plasma emission spectrometry utilizing micro-sampling techniques with internal standard , 1981 .

[38]  R. Browner,et al.  Some observations on electrothermal vaporisation for sample introduction into the inductively coupled plasma , 1985 .

[39]  S. A. Myers,et al.  Improved performance using internal standardization in inductively coupled plasma emission spectroscopy , 1983 .

[40]  J. Winefordner,et al.  Laser excited atomic and ionic fluorescence in an inductively coupled plasma , 1983 .

[41]  V. Fassel,et al.  Flow injection analysis with inductively coupled plasma-atomic emission spectroscopy: critical comparison of conventional pneumatic, ultrasonic and direct injection nebulization , 1985 .

[42]  A. Lorber,et al.  Correction for drift by internal reference methods in inductively coupled plasma simultaneous multielement analysis , 1984 .

[43]  G. Schmidt,et al.  Inductively coupled plasma emission spectrometry with internal standardization and subtraction of plasma background fluctuations , 1982 .

[44]  K. Fuwa,et al.  Vacuum ultraviolet ionic emission lines of typical Group 13-15 elements for inductively coupled argon plasma emission spectrometry , 1985 .

[45]  T. Niemczyk,et al.  “Top-Down” versus “Side-On” Viewing of the Inductively Coupled Plasma , 1985 .

[46]  J. Bradshaw,et al.  Atomic and ionic fluorescence spectrometry with pulsed dye laser excitation in the inductively-coupled plasma , 1980 .