Elementary steps of iron catalysis: exploring the links between iron alkyl and iron olefin complexes for their relevance in C-H activation and C-C bond formation.

The alkylation of complexes 2 and 7 with Grignard reagents containing β-hydrogen atoms is a process of considerable relevance for the understanding of C-H activation as well as C-C bond formation mediated by low-valent iron species. Specifically, reaction of 2 with EtMgBr under an ethylene atmosphere affords the bis-ethylene complex 1 which is an active precatalyst for prototype [2+2+2] cycloaddition reactions and a valuable probe for mechanistic studies. This aspect is illustrated by its conversion into the bis-alkyne complex 6 as an unprecedented representation of a cycloaddition catalyst loaded with two substrates molecules. On the other hand, alkylation of 2 with 1 equivalent of cyclohexylmagnesium bromide furnished the unique iron alkyl species 11 with a 14-electron count, which has no less than four β-H atoms but is nevertheless stable at low temperature against β-hydride elimination. In contrast, the exhaustive alkylation of 1 with cyclohexylmagnesium bromide triggers two consecutive C-H activation reactions mediated by a single iron center. The resulting complex has a diene dihydride character in solution (15), whereas its structure in the solid state is more consistent with an η(3) -allyl iron hydride rendition featuring an additional agostic interaction (14). Finally, the preparation of the cyclopentadienyl iron complex 25 illustrates how an iron-mediated C-H activation cascade can be coaxed to induce a stereoselective CC bond formation. The structures of all relevant new iron complexes in the solid state are presented.

[1]  Alois Fürstner Katalyse und Totalsynthese: eine persönliche Zwischenbilanz , 2014 .

[2]  A. Fürstner Catalysis for total synthesis: a personal account. , 2014, Angewandte Chemie.

[3]  Guy Bertrand,et al.  Two-coordinate Fe⁰ and Co⁰ complexes supported by cyclic (alkyl)(amino)carbenes. , 2014, Angewandte Chemie.

[4]  Lei Wang,et al.  (Aminocarbene)(divinyltetramethyldisiloxane)iron(0) compounds: a class of low-coordinate iron(0) reagents. , 2014, Angewandte Chemie.

[5]  Chang-Liang Sun,et al.  A Practical Procedure for Iron-Catalyzed Cross-Coupling Reactions of Sterically Hindered Aryl-Grignard Reagents with Primary Alkyl Halides , 2014 .

[6]  J. Renaud,et al.  Iron(II)-catalysed [2+2+2] cycloaddition for pyridine ring construction. , 2014, Chemical communications.

[7]  J. Epping,et al.  Bis-N-heterocyclic carbene (NHC) stabilized η6-arene iron(0) complexes: synthesis, structure, reactivity, and catalytic activity. , 2013, Journal of the American Chemical Society.

[8]  Patrick L. Holland,et al.  Spin Crossover during β-Hydride Elimination in High-Spin Iron(II)– and Cobalt(II)–Alkyl Complexes , 2013 .

[9]  A. Fürstner Alkyne metathesis on the rise. , 2013, Angewandte Chemie.

[10]  Fen Xu,et al.  Iron-catalyzed cycloaddition reaction of diynes and cyanamides at room temperature. , 2013, The Journal of organic chemistry.

[11]  E. Nakamura,et al.  Iron-catalyzed allylic arylation of olefins via C(sp3)-H activation under mild conditions. , 2013, Organic letters.

[12]  J. Raynaud,et al.  Corrigendum: Iron‐Catalyzed Polymerization of Isoprene and Other 1,3‐Dienes , 2012 .

[13]  B. Wan,et al.  Recent advances in the iron-catalyzed cycloaddition reactions , 2012 .

[14]  Fan Wu,et al.  A simple and highly efficient iron catalyst for a [2+2+2] cycloaddition to form pyridines. , 2011, Angewandte Chemie.

[15]  Chang-Liang Sun,et al.  Direct C-H transformation via iron catalysis. , 2011, Chemical reviews.

[16]  E. Nakamura,et al.  Low-valent iron-catalyzed C-C bond formation-addition, substitution, and C-H bond activation. , 2010, The Journal of organic chemistry.

[17]  Tamotsu Takahashi,et al.  Recent Development for Formation of Aromatic Compounds via Metallacyclopentadienes as Metal-Containing Heterocycles , 2010 .

[18]  K. Lammertsma,et al.  P-C dichotomy: divergent iron(-I)-mediated alkyne and phosphaalkyne cycloligomerisations. , 2010, Dalton transactions.

[19]  B. Sherry,et al.  Iron-catalyzed addition of Grignard reagents to activated vinyl cyclopropanes. , 2009, Chemical communications.

[20]  J. Janikowski,et al.  Iron‐Catalyzed Cycloadditions and Ring Expansion Reactions , 2008 .

[21]  P. Chirik,et al.  Bis(imino)pyridine iron alkyls containing beta-hydrogens: synthesis, evaluation of kinetic stability, and decomposition pathways involving chelate participation. , 2008, Journal of the American Chemical Society.

[22]  Alois Fürstner,et al.  The promise and challenge of iron-catalyzed cross coupling. , 2008, Accounts of chemical research.

[23]  A. Fürstner,et al.  Preparation, structure, and reactivity of nonstabilized organoiron compounds. Implications for iron-catalyzed cross coupling reactions. , 2008, Journal of the American Chemical Society.

[24]  A. Fürstner,et al.  A cheap metal for a "noble" task: preparative and mechanistic aspects of cycloisomerization and cycloaddition reactions catalyzed by low-valent iron complexes. , 2008, Journal of the American Chemical Society.

[25]  Malcolm L. H. Green,et al.  Agostic interactions in transition metal compounds , 2007, Proceedings of the National Academy of Sciences.

[26]  Patrick L. Holland,et al.  Binding affinity of alkynes and alkenes to low-coordinate iron. , 2006, Inorganic chemistry.

[27]  A. Fürstner,et al.  Unusual structure and reactivity of a homoleptic "super-ate" complex of iron: implications for Grignard additions, cross-coupling reactions, and the Kharasch deconjugation. , 2006, Angewandte Chemie.

[28]  Patrick L. Holland,et al.  Reversible Beta-Hydrogen Elimination of Three-Coordinate Iron(II) Alkyl Complexes: Mechanistic and Thermodynamic Studies , 2004 .

[29]  A. Fürstner,et al.  Iron-catalyzed cross-coupling reactions. A scalable synthesis of the immunosuppressive agent FTY720. , 2004, The Journal of organic chemistry.

[30]  B. Scheiper,et al.  Selective iron-catalyzed cross-coupling reactions of grignard reagents with enol triflates, acid chlorides, and dichloroarenes. , 2004, The Journal of organic chemistry.

[31]  Kevin M. Smith,et al.  Understanding the reactivity of transition metal complexes involving multiple spin states , 2003 .

[32]  A. Fürstner,et al.  Iron-catalyzed cross-coupling reactions. , 2002, Journal of the American Chemical Society.

[33]  V. Guerchais,et al.  Alkyne Coupling Reactions Mediated by Iron(II) Complexes: Highly Chemo- and Regioselective Formation of η6-Coordinated Arene and Pyridine Complexes , 2002 .

[34]  A. Leitner,et al.  Eisenkatalysierte Kreuzkupplungen von Alkyl‐Grignard‐Verbindungen mit Arylchloriden, ‐tosylaten und ‐triflaten , 2002 .

[35]  A. Fürstner,et al.  Iron-Catalyzed Cross-Coupling Reactions of Alkyl-Grignard Reagents with Aryl Chlorides, Tosylates, and Triflates , 2002 .

[36]  S. Hikichi,et al.  Tetrahedral, Highly Coordinatively Unsaturated 14e (Fe) and 15e (Co) Hydrocarbyl Complexes Bearing Hydrotris(pyrazolyl)borato Ligands (TpR‘), TpR‘M−R (M = Fe, Co, Ni) , 2001 .

[37]  P. Pertici,et al.  (η6-Cyclohepta-1,3,5-triene)(η4-cycloocta-1,5-diene)iron(0) complex as attractive precursor in catalysis , 2000 .

[38]  S. Shaik,et al.  Two-state reactivity as a new concept in organometallic chemistry. , 2000, Accounts of chemical research.

[39]  S. Geier,et al.  Application of Molecular Modeling to C−H Activation in Organoiron Compounds , 1998 .

[40]  Masafumi Hirano,et al.  Synthesis, structure and reactivity of an (η6-naphthalene)iron(0) complex having a 1,2-bis(dicyclohexylphosphino)ethane ligand , 1998 .

[41]  S. Geier,et al.  REACTION OF UNCONJUGATED DIENES WITH FE(R2P(CH2)NPR2) SPECIES , 1997 .

[42]  U. Zenneck,et al.  (η4-1,5-Cyclooctadiene)(η6-phosphinine)iron(0): Novel Room-Temperature Catalyst for Pyridine Formation†,1 , 1996 .

[43]  P. W. Jolly,et al.  INTERACTION OF ACYCLIC TETRAENES AND TRIENES WITH TRANSITION METALS : ORGANOIRON COMPOUNDS , 1995 .

[44]  W. Wisniewski,et al.  The Reaction of Dienes with [Fe(Pri2P(CH2)nPPri2)] Species , 1995 .

[45]  P. W. Jolly,et al.  The preparation of bis(η3-allyl)iron(II) complexes and their reactions with 1,3-dienes , 1994 .

[46]  R. McMahon,et al.  Structure and reactivity of [HFe(CO)3(η3-C3H5)] , 1993 .

[47]  Terence M. Barnhart,et al.  Struktur und Reaktivitt von [HFe(CO)3(?3-C3H5)] , 1993 .

[48]  J. Bleeke,et al.  Pentadienyl-metal-phosphine chemistry: XXI. Synthesis and characterization of electron-rich (pentadienyl)iron[1,2-bis(diethylphosphino)ethane] complexes , 1991 .

[49]  U. Zenneck Hochreaktive Zwischenverbindungen aus Cokondensationsreaktionen von Eisen‐, Cobalt‐ und Nickeldämpfen mit Arenen , 1990 .

[50]  U. Zenneck Highly Reactive Intermediates from the Cocondensation Reactions of Iron, Cobalt and Nickel Vapor with Arenes , 1990 .

[51]  K. Jonas New findings in the arene chemistry of the 3d transition metals , 1990 .

[52]  H. Lehmkuhl,et al.  Indirect two-dimensional heteronuclear NMR spectroscopy. Phosphorus-31 and iron-57 spectra of organoiron complexes , 1988 .

[53]  G. Girolami,et al.  Fourteen-Electron Organoiron Species: Synthesis and Characterization of High-Spin Iron (II) Alkyls and the Crystal Structure of the Benzyl Derivative Fe(CH2C6H4CH3)2(dippe) , 1987 .

[54]  H. Hoberg,et al.  CC-kupplungen von CO2 mit 1,3-dienen an eisen(0)-komplexen; carboxylatbildung und folgereaktionen , 1987 .

[55]  C. Krüger,et al.  Neue Methoden zur Herstellung von Trialkylphosphan-Alkadien-Eisen(0)-Komplexen , 1987 .

[56]  C. Krüger,et al.  CC‐Verknüpfungen von Ethen mit CO2 an einem Eisen(0)‐Komplex – Darstellung und Kristallstrukturanalyse von [(PEt3)2Fe(C2H4)2] , 1987 .

[57]  C. Krüger,et al.  CC‐Linkages of Ethene with CO2 on an Iron(0) Complex—Synthesis and Crystal Structure Analysis of [(PEt3)2Fe(C2H4)2] , 1987 .

[58]  L. Field,et al.  Reaction of sp2 carbon-hydrogen bonds in unactivated alkenes with bis(diphosphine) complexes of iron , 1986 .

[59]  C. Krüger,et al.  CC‐Coupling of CO2 and Butadiene on Iron(0) Complexes—A Novel Route to α,ω‐Dicarboxylic Acids , 1986 .

[60]  C. Krüger,et al.  CC-Kupplung von CO2 und Butadien an Eisen(o)-Komplexen – ein neuer Weg zu α,ω-Dicarbonsäuren , 1986 .

[61]  H. Hoberg,et al.  η4,3-butadien-tris(triethylphosphan)eisen(0): Ein komplex zur fixierung von alkenen oder alkinen , 1986 .

[62]  Rainer Diercks,et al.  Diazadien‐Eisen‐katalysierte Diels‐Alder‐Reaktionen von Dienen mit Alkinen , 1983 .

[63]  H. Dieck,et al.  Diels‐Alder Reactions of Dienes with Alkynes Catalyzed by Diazadieneiron , 1983 .

[64]  C. Krüger,et al.  η6-Bonded Alkylbenzenes as Novel Bridging Ligands in Dinuclear Complexes of Iron and Cobalt , 1983 .

[65]  C. A. Tolman,et al.  A novel 16-electron cyclooctenyliron(II) cation , 1978 .

[66]  A. Mavridis,et al.  A reinvestigation of tolane , 1977 .

[67]  M. Brookhart,et al.  SPECTROSCOPIC STUDIES OF THE STRUCTURES OF PROTONATED DIENEIRON TRICARBONYL COMPLEXES , 1976 .

[68]  F. Takusagawa,et al.  Catalytic iron-mediated ene carbocyclizations: formal [4+4]-ene reactions of triene esters☆ , 1990 .

[69]  J. Genet,et al.  Cycloaddition des ynamines avec le butadiene catalysee par le fer(0) : synthese de cyclohexadienamines-1,4 et de cyclohexenones β,γ et α,β-insaturees. , 1979 .