PROOF COPY 020815APL Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits

The authors reported on investigation of the thermal conductivity of graphene suspended across trenches in Si∕SiO2 wafer. The measurements were performed using a noncontact technique based on micro-Raman spectroscopy. The amount of power dissipated in graphene and corresponding temperature rise were determined from the spectral position and integrated intensity of graphene’s G mode. The extremely high thermal conductivity in the range of ∼3080–5150W∕mK and phonon mean free path of ∼775nm near room temperature were extracted for a set of graphene flakes. The obtained results suggest graphene’s applications as thermal management material in future nanoelectronic circuits.

[1]  C. N. Lau,et al.  Variable temperature Raman microscopy as a nanometrology tool for graphene layers and graphene-based devices , 2007 .

[2]  P. Hendra Laser Raman spectroscopy by Marvin C. Tobin Wiley Interscience N.Y. , 1972 .

[3]  A. Majumdar,et al.  Thermal conductance and thermopower of an individual single-wall carbon nanotube. , 2005, Nano letters.

[4]  M. C. Tobin Laser Raman Spectroscopy , 1981 .

[5]  P. McEuen,et al.  Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical Review Letters.

[6]  A. Neto,et al.  Making graphene visible , 2007, Applied Physics Letters.

[7]  C. N. Lau,et al.  Ballistic phonon thermal transport in multiwalled carbon nanotubes. , 2005, Physical review letters.

[8]  Syassen,et al.  Graphite under pressure: Equation of state and first-order Raman modes. , 1989, Physical review. B, Condensed matter.

[9]  N. Abdullaev Grüneisen parameters for layered crystals , 2001 .

[10]  A. V. Khomich,et al.  Thermal conductivity of CVD diamond at elevated temperatures , 2005 .

[11]  Bernard Champagnon,et al.  Measurement of porous silicon thermal conductivity by micro-Raman scattering , 1999 .

[12]  A. Pfrang,et al.  Quantitative analysis of pyrolytic carbon films by polarized light microscopy , 2004 .

[13]  E. Pop,et al.  Thermal conductance of an individual single-wall carbon nanotube above room temperature. , 2005, Nano letters.

[14]  D. Rousseau,et al.  Raman spectra of molecules and crystals , 1972 .

[15]  S. Reich,et al.  SHEAR STRAIN IN CARBON NANOTUBES UNDER HYDROSTATIC PRESSURE , 2000 .

[16]  A. E. Geissberger,et al.  Raman studies of vitreous Si O 2 versus fictive temperature , 1983 .

[17]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[18]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[19]  H. Mavoori,et al.  Processing and properties of CVD diamond for thermal management , 1998 .

[20]  Nicola Marzari,et al.  First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives , 2004, cond-mat/0412643.

[21]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[22]  R. A. Suleimanov,et al.  On the role played by bending vibrations in heat transfer in layered crystals , 2002 .

[23]  Manoj Sachdev,et al.  Thermal and Power Management of Integrated Circuits , 2006, Series on Integrated Circuits and Systems.

[24]  Martin Kuball,et al.  Measurement of temperature distribution in multifinger AlGaN/GaN heterostructure field-effect transistors using micro-Raman spectroscopy , 2003 .

[25]  Scott T. Huxtable,et al.  Interfacial heat flow in carbon nanotube suspensions , 2003, Nature materials.

[26]  F. L. Galeener,et al.  Band limits and the vibrational spectra of tetrahedral glasses , 1979 .

[27]  Graphene-on-Sapphire and Graphene-on-Glass: Raman Spectroscopy Study , 2007, 0710.2369.

[28]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[29]  P. Klemens,et al.  Thermal conductivity of graphite in the basal plane , 1994 .

[30]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[31]  Raphael Tsu,et al.  Temperature dependence of silicon Raman lines , 1982 .

[32]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[33]  C. N. Lau,et al.  Temperature dependence of the Raman spectra of graphene and graphene multilayers. , 2007, Nano letters.

[34]  M. Dresselhaus,et al.  Phonons in carbon nanotubes , 2000 .

[35]  W. Bao,et al.  Phase-Coherent Transport in Graphene Quantum Billiards , 2007, Science.

[36]  Daniel Vivien,et al.  A simple model for the prediction of thermal conductivity in pure and doped insulating crystals , 2003 .

[37]  M. Radosavljevic,et al.  Carbon nanotube composites for thermal management , 2002, cond-mat/0205418.