Phonon engineering in nanostructures: Controlling interfacial thermal resistance in multilayer-graphene/dielectric heterojunctions
暂无分享,去创建一个
Arrigo Calzolari | M. Buongiorno Nardelli | K. W. Kim | A. Calzolari | M. Nardelli | B. Kong | Ki Wook Kim | T. Jayasekera | Rui Mao | B. D. Kong | Thushari Jayasekera | R. Mao
[1] Stefano de Gironcoli,et al. Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.
[2] Eric Pop,et al. Heat Generation and Transport in Nanometer-Scale Transistors , 2006, Proceedings of the IEEE.
[3] M. Buongiorno Nardelli,et al. Thermoelectric properties of graphene nanoribbons, junctions and superlattices , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.
[4] K. Shepard,et al. Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.
[5] J. Lü,et al. Quantum thermal transport in nanostructures , 2008, 0802.2761.
[6] K. W. Kim,et al. Ab initio thermal transport properties of nanostructures from density functional perturbation theory , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.
[7] R. Pohl,et al. Thermal boundary resistance , 1989 .
[8] Baroni,et al. Phonon spectra of ultrathin GaAs/AlAs superlattices: An ab initio calculation. , 1990, Physical review. B, Condensed matter.
[9] Yunfei Chen,et al. Interfacial thermal resistance in multilayer graphene structures , 2011 .
[10] R. Ruoff,et al. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. , 2010, Nano letters.
[11] Xavier Gonze,et al. Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory , 1997 .
[12] Andre K. Geim,et al. The rise of graphene. , 2007, Nature materials.
[13] T. Beechem,et al. Manipulating thermal conductance at metal-graphene contacts via chemical functionalization. , 2012, Nano letters.
[14] J. Crain,et al. Scattering and Interference in Epitaxial Graphene , 2007, Science.
[15] Timothy S. Fisher,et al. The Atomistic Green's Function Method: An Efficient Simulation Approach for Nanoscale Phonon Transport , 2007 .
[16] Marco Buongiorno Nardelli,et al. Electronic transport in extended systems: Application to carbon nanotubes , 1999 .
[17] M. Buongiorno Nardelli,et al. Band engineering and magnetic doping of epitaxial graphene on SiC (0001). , 2010, Physical review letters.
[18] Young,et al. Lattice-dynamical calculation of the Kapitza resistance between fcc lattices. , 1989, Physical review. B, Condensed matter.
[19] M. Stroscio,et al. Graphite C-axis thermal conductivity , 2009 .
[20] C. N. Lau,et al. Thermal contact resistance between graphene and silicon dioxide , 2009 .
[21] Stefano de Gironcoli,et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.
[22] K. W. Kim,et al. First-principles analysis of lattice thermal conductivity in monolayer and bilayer graphene , 2009 .
[23] Alan J. H. McGaughey,et al. Thermal boundary resistance predictions from molecular dynamics simulations and theoretical calculations , 2009 .