Phonon engineering in nanostructures: Controlling interfacial thermal resistance in multilayer-graphene/dielectric heterojunctions

Article discussing phonon engineering in nanostructures and controlling interfacial thermal resistance in multilayer-graphene/dielectric heterojunctions.

[1]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[2]  Eric Pop,et al.  Heat Generation and Transport in Nanometer-Scale Transistors , 2006, Proceedings of the IEEE.

[3]  M. Buongiorno Nardelli,et al.  Thermoelectric properties of graphene nanoribbons, junctions and superlattices , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[4]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[5]  J. Lü,et al.  Quantum thermal transport in nanostructures , 2008, 0802.2761.

[6]  K. W. Kim,et al.  Ab initio thermal transport properties of nanostructures from density functional perturbation theory , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[7]  R. Pohl,et al.  Thermal boundary resistance , 1989 .

[8]  Baroni,et al.  Phonon spectra of ultrathin GaAs/AlAs superlattices: An ab initio calculation. , 1990, Physical review. B, Condensed matter.

[9]  Yunfei Chen,et al.  Interfacial thermal resistance in multilayer graphene structures , 2011 .

[10]  R. Ruoff,et al.  Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. , 2010, Nano letters.

[11]  Xavier Gonze,et al.  Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory , 1997 .

[12]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[13]  T. Beechem,et al.  Manipulating thermal conductance at metal-graphene contacts via chemical functionalization. , 2012, Nano letters.

[14]  J. Crain,et al.  Scattering and Interference in Epitaxial Graphene , 2007, Science.

[15]  Timothy S. Fisher,et al.  The Atomistic Green's Function Method: An Efficient Simulation Approach for Nanoscale Phonon Transport , 2007 .

[16]  Marco Buongiorno Nardelli,et al.  Electronic transport in extended systems: Application to carbon nanotubes , 1999 .

[17]  M. Buongiorno Nardelli,et al.  Band engineering and magnetic doping of epitaxial graphene on SiC (0001). , 2010, Physical review letters.

[18]  Young,et al.  Lattice-dynamical calculation of the Kapitza resistance between fcc lattices. , 1989, Physical review. B, Condensed matter.

[19]  M. Stroscio,et al.  Graphite C-axis thermal conductivity , 2009 .

[20]  C. N. Lau,et al.  Thermal contact resistance between graphene and silicon dioxide , 2009 .

[21]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[22]  K. W. Kim,et al.  First-principles analysis of lattice thermal conductivity in monolayer and bilayer graphene , 2009 .

[23]  Alan J. H. McGaughey,et al.  Thermal boundary resistance predictions from molecular dynamics simulations and theoretical calculations , 2009 .