Three-dimensional models of core-collapse supernovae from low-mass progenitors with implications for Crab

We present 3D full-sphere supernova simulations of non-rotating low-mass (∼9 M_⊙) progenitors, covering the entire evolution from core collapse through bounce and shock revival, through shock breakout from the stellar surface, until fallback is completed several days later. We obtain low-energy explosions (∼0.5–1.0 × 10⁵⁰ erg) of iron-core progenitors at the low-mass end of the core-collapse supernova (LMCCSN) domain and compare to a super-AGB (sAGB) progenitor with an oxygen–neon–magnesium core that collapses and explodes as electron-capture supernova (ECSN). The onset of the explosion in the LMCCSN models is modelled self-consistently using the VERTEX-PROMETHEUS code, whereas the ECSN explosion is modelled using parametric neutrino transport in the PROMETHEUS-HOTB code, choosing different explosion energies in the range of previous self-consistent models. The sAGB and LMCCSN progenitors that share structural similarities have almost spherical explosions with little metal mixing into the hydrogen envelope. A LMCCSN with less second dredge-up results in a highly asymmetric explosion. It shows efficient mixing and dramatic shock deceleration in the extended hydrogen envelope. Both properties allow fast nickel plumes to catch up with the shock, leading to extreme shock deformation and aspherical shock breakout. Fallback masses of ≲ 5×10⁻³ M_⊙ have no significant effects on the neutron star (NS) masses and kicks. The anisotropic fallback carries considerable angular momentum, however, and determines the spin of the newly born NS. The LMCCSN model with less second dredge-up results in a hydrodynamic and neutrino-induced NS kick of >40 km s⁻¹ and a NS spin period of ∼30 ms, both not largely different from those of the Crab pulsar at birth.

[1]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[2]  L. Sedov Similarity and Dimensional Methods in Mechanics , 1960 .

[3]  Richard H. White,et al.  The Hydrodynamic Behavior of Supernovae Explosions , 1964 .

[4]  R. Klein,et al.  On the Rayleigh-Taylor instability in stellar explosions , 1977 .

[5]  K. Riper,et al.  Diffusion approximation to neutrino transport in dense matter , 1978 .

[6]  D. Tubbs Conservative scattering, electron scattering, and neutrino thermalization. , 1979 .

[7]  K. Nomoto,et al.  The Crab Nebula's progenitor , 1982, Nature.

[8]  R. Fesen,et al.  Deep optical imagery of the Crab Nebula's jet , 1982 .

[9]  R. Blandford,et al.  Trail of the Crab progenitor star , 1983, Nature.

[10]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[11]  K. Nomoto Evolution of 8-10 solar mass stars toward electron capture supernovae. I - Formation of electron-degenerate O + NE + MG cores. , 1984 .

[12]  James R. Wilson,et al.  Revival of a stalled supernova shock by neutrino heating , 1985 .

[13]  R. Fesen,et al.  Recent Developments Concerning the Crab Nebula , 1985 .

[14]  G. Chanan Galactic supernova remnants: the crab nebula and related supernova remnants. , 1986, Science.

[15]  K. Nomoto Evolution of 8--10 M sun Stars toward Electron Capture Supernovae. II. Collapse of an O + NE + MG Core , 1987 .

[16]  K. Nomoto,et al.  New Developments in Theoretical Modelling of SN 1987A , 1988, Publications of the Astronomical Society of Australia.

[17]  M. Phillips,et al.  Supernova 1987 A , 1989 .

[18]  S. Woosley The Great Supernova of 1987 a , 1989 .

[19]  R. Chevalier Neutron Star Accretion in a Supernova , 1989 .

[20]  B. Fryxell,et al.  Instabilities and nonradial motion in SN 1987A , 1989 .

[21]  B. Fryxell,et al.  Instabilities and clumping in SN 1987A. I, Early evolution in two dimensions , 1991 .

[22]  F. Swesty,et al.  A Generalized equation of state for hot, dense matter , 1991 .

[23]  R. Fesen,et al.  The structure and motion of the Crab nebula jet , 1993 .

[24]  D. Nadyozhin The properties of NI to CO to Fe decay , 1994 .

[25]  W. Benz,et al.  Inside the Supernova: A Powerful Convective Engine , 1994, astro-ph/9404024.

[26]  H. Janka,et al.  Neutrino-driven Type-II supernova explosions and the role of convection. , 1995 .

[27]  A. Burrows,et al.  On the nature of core-collapse supernova explosions , 1995, astro-ph/9506061.

[28]  E. Steinmetz Simulating self-gravitating hydrodynamic flows , 1994, astro-ph/9402070.

[29]  R. Harkness,et al.  Gamma-Ray Transfer and Energy Deposition in Supernovae , 1995, astro-ph/9501005.

[30]  Nucleosynthesis in Neutrino-Driven Winds. I. The Physical Conditions , 1996, astro-ph/9611094.

[31]  F. Timmes,et al.  The Accuracy, Consistency, and Speed of Five Equations of State for Stellar Hydrodynamics , 1999 .

[32]  Nuclear matter and its role in supernovae, neutron stars and compact object binary mergers , 2000, astro-ph/0002203.

[33]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[34]  H. Janka Conditions for shock revival by neutrino heating in core-collapse supernovae , 2000, astro-ph/0008432.

[35]  H. Janka,et al.  Radiation hydrodynamics with neutrinos - Variable Eddington factor method for core-collapse supernova simulations , 2002, astro-ph/0203101.

[36]  Weak magnetism for antineutrinos in supernovae , 2001, astro-ph/0109209.

[37]  A. Mezzacappa,et al.  Stability of Standing Accretion Shocks, with an Eye toward Core-Collapse Supernovae , 2002, astro-ph/0210634.

[38]  I. Hachisu,et al.  Evolution of Rotating Accreting White Dwarfs and the Diversity of Type Ia Supernovae , 2003, astro-ph/0309433.

[39]  M. Bejger,et al.  Accelerated expansion of the Crab Nebula and evaluation of its neutron-star parameters , 2003, astro-ph/0301071.

[40]  Non-spherical core collapse supernovae. I. Neutrino-driven convection, Rayleigh-Taylor instabilities, and the formation and propagation of metal clumps , 2003, astro-ph/0302239.

[41]  A. Kageyama,et al.  ``Yin-Yang grid'': An overset grid in spherical geometry , 2004, physics/0403123.

[42]  B. Schutz,et al.  Constraining the Equation of State with Moment of Inertia Measurements , 2004, astro-ph/0411470.

[43]  M. Liebendörfer,et al.  A Simple Parameterization of the Consequences of Deleptonization for Simulations of Stellar Core Collapse , 2005, astro-ph/0504072.

[44]  K. Kotake,et al.  Numerical Analysis of Standing Accretion Shock Instability with Neutrino Heating in Supernova Cores , 2005, astro-ph/0509765.

[45]  Explosions of O-Ne-Mg cores, the Crab supernova, and subluminous type II-P supernovae , 2005, astro-ph/0512065.

[46]  Exploring the relativistic regime with Newtonian hydrodynamics: an improved effective gravitational potential for supernova simulations , 2005, astro-ph/0502161.

[47]  M. Rampp,et al.  Two-dimensional hydrodynamic core-collapse supernova simulations with spectral neutrino transport - I. Numerical method and results for a 15 solar mass star , 2005, astro-ph/0507135.

[48]  E. Müller,et al.  Multidimensional supernova simulations with approximative neutrino transport. I. Neutron star kicks and the anisotropy of neutrino-driven explosions in two spatial dimensions , 2006, astro-ph/0601302.

[49]  Non-spherical core collapse supernovae - II. The late-time evolution of globally anisotropic neutrino-driven explosions and their implications for SN 1987 A , 2005, astro-ph/0511369.

[50]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[51]  L. Scheck,et al.  Instability of a Stalled Accretion Shock: Evidence for the Advective-Acoustic Cycle , 2006, astro-ph/0606640.

[52]  Nucleosynthesis-relevant conditions in neutrino-driven supernova outflows. I. Spherically symmetric , 2006, astro-ph/0612582.

[53]  A. Mezzacappa,et al.  Pulsar spins from an instability in the accretion shock of supernovae , 2006, Nature.

[54]  Brian E. Granger,et al.  IPython: A System for Interactive Scientific Computing , 2007, Computing in Science & Engineering.

[55]  J. Anderson,et al.  A Precise Proper Motion for the Crab Pulsar, and the Difficulty of Testing Spin-Kick Alignment for Young Neutron Stars , 2008, 0801.1142.

[56]  S. Woosley,et al.  MIXING IN ZERO- AND SOLAR-METALLICITY SUPERNOVAE , 2008, 0810.5142.

[57]  F. Kitaura,et al.  Dynamics of shock propagation and nucleosynthesis conditions in O-Ne-Mg core supernovae , 2007, 0712.4237.

[58]  S. Woosley,et al.  Fallback and Black Hole Production in Massive Stars , 2007, astro-ph/0701083.

[59]  J. J. Hester,et al.  The Crab Nebula: An Astrophysical Chimera , 2008 .

[60]  H. Janka,et al.  Equation-of-state dependent features in shock-oscillation modulated neutrino and gravitational-wave signals from supernovae , 2008, 0808.4136.

[61]  Chris L. Fryer NEUTRINOS FROM FALLBACK ONTO NEWLY FORMED NEUTRON STARS , 2007, 0711.0551.

[62]  E. Nakar,et al.  EARLY SUPERNOVAE LIGHT CURVES FOLLOWING THE SHOCK BREAKOUT , 2010, 1004.2496.

[63]  S. Woosley,et al.  NUCLEOSYNTHESIS AND EVOLUTION OF MASSIVE METAL-FREE STARS , 2008, 0803.3161.

[64]  S. Woosley,et al.  THREE-DIMENSIONAL SIMULATIONS OF RAYLEIGH–TAYLOR MIXING IN CORE-COLLAPSE SUPERNOVAE , 2010 .

[65]  H. Janka,et al.  THREE-DIMENSIONAL SIMULATIONS OF MIXING INSTABILITIES IN SUPERNOVA EXPLOSIONS , 2009, 0908.3474.

[66]  H. Janka,et al.  HYDRODYNAMICAL NEUTRON STAR KICKS IN THREE DIMENSIONS , 2010, 1010.0167.

[67]  E. Muller,et al.  An axis-free overset grid in spherical polar coordinates for simulating 3D self-gravitating flows , 2010, 1003.1633.

[68]  H. Janka,et al.  Neutrino signal of electron-capture supernovae from core collapse to cooling , 2010 .

[69]  A. Mezzacappa,et al.  Protoneutron star evolution and the neutrino-driven wind in general relativistic neutrino radiation hydrodynamics simulations , 2009, 0908.1871.

[70]  N. Soker Applying the jet feedback mechanism to core-collapse supernova explosions , 2009, 0909.5276.

[71]  R. Fern'andez THE SPIRAL MODES OF THE STANDING ACCRETION SHOCK INSTABILITY , 2010, 1003.1730.

[72]  Hank Childs,et al.  VisIt: An End-User Tool for Visualizing and Analyzing Very Large Data , 2011 .

[73]  K. Nomoto,et al.  A SINGLE DEGENERATE PROGENITOR MODEL FOR TYPE Ia SUPERNOVAE HIGHLY EXCEEDING THE CHANDRASEKHAR MASS LIMIT , 2011, 1106.3510.

[74]  C. Ott,et al.  BLACK HOLE FORMATION IN FAILING CORE-COLLAPSE SUPERNOVAE , 2010, 1010.5550.

[75]  W. Arnett,et al.  TOWARD REALISTIC PROGENITORS OF CORE-COLLAPSE SUPERNOVAE , 2011, 1101.5646.

[76]  H. Janka,et al.  ELECTRON-CAPTURE SUPERNOVAE AS THE ORIGIN OF ELEMENTS BEYOND IRON , 2010, 1009.1000.

[77]  D. Kasen,et al.  SUPERNOVA LIGHT CURVES POWERED BY FALLBACK ACCRETION , 2012, 1210.7240.

[78]  C. Fryer,et al.  A CASE STUDY OF SMALL-SCALE STRUCTURE FORMATION IN THREE-DIMENSIONAL SUPERNOVA SIMULATIONS , 2012, 1206.1834.

[79]  H. Janka,et al.  PROGENITOR-EXPLOSION CONNECTION AND REMNANT BIRTH MASSES FOR NEUTRINO-DRIVEN SUPERNOVAE OF IRON-CORE PROGENITORS , 2012, 1205.3657.

[80]  K. Kotake,et al.  THREE-DIMENSIONAL HYDRODYNAMIC CORE-COLLAPSE SUPERNOVA SIMULATIONS FOR AN 11.2 M☉ STAR WITH SPECTRAL NEUTRINO TRANSPORT , 2011, 1108.3989.

[81]  E. Wes Bethel,et al.  High Performance Visualization - Enabling Extreme-Scale Scientific Insight , 2012, High Performance Visualization.

[82]  Garching,et al.  Core-collapse supernovae: Reflections and directions , 2012, 1211.1378.

[83]  H. Janka Explosion Mechanisms of Core-Collapse Supernovae , 2012, 1206.2503.

[84]  C. Ott,et al.  REVIVAL OF THE STALLED CORE-COLLAPSE SUPERNOVA SHOCK TRIGGERED BY PRECOLLAPSE ASPHERICITY IN THE PROGENITOR STAR , 2013, 1309.2632.

[85]  A. Burrows Colloquium: Perspectives on core-collapse supernova theory , 2012, 1210.4921.

[86]  K. Nomoto,et al.  SUPERNOVA EXPLOSIONS OF SUPER-ASYMPTOTIC GIANT BRANCH STARS: MULTICOLOR LIGHT CURVES OF ELECTRON-CAPTURE SUPERNOVAE , 2013, 1305.6813.

[87]  N. Smith,et al.  The Crab nebula and the class of Type IIn-P supernovae caused by sub-energetic electron-capture explosions , 2013, 1304.0689.

[88]  Asu,et al.  ADVANCED BURNING STAGES AND FATE OF 8–10 M☉ STARS , 2013, 1306.2030.

[89]  E. Müller,et al.  Three-dimensional neutrino-driven supernovae: neutron star kicks, spins, and asymmetric ejection of nucleosynthesis products , 2012, 1210.8148.

[90]  D. Stevenson Extreme Explosions: Supernovae, Hypernovae, Magnetars, and Other Unusual Cosmic Blasts , 2013 .

[91]  H. Janka,et al.  A NEW MULTI-DIMENSIONAL GENERAL RELATIVISTIC NEUTRINO HYDRODYNAMICS CODE OF CORE-COLLAPSE SUPERNOVAE. III. GRAVITATIONAL WAVE SIGNALS FROM SUPERNOVA EXPLOSION MODELS , 2012, 1210.6984.

[92]  H. Janka,et al.  A NEW MULTI-DIMENSIONAL GENERAL RELATIVISTIC NEUTRINO HYDRODYNAMICS CODE FOR CORE-COLLAPSE SUPERNOVAE. IV. THE NEUTRINO SIGNAL , 2014, 1402.3415.

[93]  S. Couch,et al.  HIGH-RESOLUTION THREE-DIMENSIONAL SIMULATIONS OF CORE-COLLAPSE SUPERNOVAE IN MULTIPLE PROGENITORS , 2013, 1310.5728.

[94]  H. Janka,et al.  SELF-SUSTAINED ASYMMETRY OF LEPTON-NUMBER EMISSION: A NEW PHENOMENON DURING THE SUPERNOVA SHOCK-ACCRETION PHASE IN THREE DIMENSIONS , 2014, 1402.5418.

[95]  V. Kalogera,et al.  The Fallback Mechanisms in Core-Collapse Supernovae , 2014, 1401.3032.

[96]  K. Kotake,et al.  A COMPARISON OF TWO- AND THREE-DIMENSIONAL NEUTRINO-HYDRODYNAMICS SIMULATIONS OF CORE-COLLAPSE SUPERNOVAE , 2013, 1308.5755.

[97]  Tokyo,et al.  Supernova 1987A: neutrino-driven explosions in three dimensions and light curves , 2014, 1412.4122.

[98]  Garching,et al.  Neutrino emission characteristics and detection opportunities based on three-dimensional supernova simulations , 2014, 1406.0006.

[99]  H. Janka,et al.  PROGENITOR-DEPENDENT EXPLOSION DYNAMICS IN SELF-CONSISTENT, AXISYMMETRIC SIMULATIONS OF NEUTRINO-DRIVEN CORE-COLLAPSE SUPERNOVAE , 2015, 1511.07871.

[100]  Astronomy,et al.  FINAL EVOLUTION AND DELAYED EXPLOSIONS OF SPINNING WHITE DWARFS IN SINGLE DEGENERATE MODELS FOR TYPE Ia SUPERNOVAE , 2015, 1508.01921.

[101]  F. Timmes,et al.  THE THREE-DIMENSIONAL EVOLUTION TO CORE COLLAPSE OF A MASSIVE STAR , 2015, 1503.02199.

[102]  S. Couch,et al.  Two-dimensional Core-collapse Supernova Explosions Aided by General Relativity with Multidimensional Neutrino Transport , 2015, 1511.07443.

[103]  R. Chevalier,et al.  EVOLUTION OF THE CRAB NEBULA IN A LOW ENERGY SUPERNOVA , 2015, 1505.03211.

[104]  H. Janka,et al.  IMPACT OF NEUTRINO FLAVOR OSCILLATIONS ON THE NEUTRINO-DRIVEN WIND NUCLEOSYNTHESIS OF AN ELECTRON-CAPTURE SUPERNOVA , 2014, 1406.2596.

[105]  Riken,et al.  Three-dimensional simulations of core-collapse supernovae: from shock revival to shock breakout , 2014, 1409.5431.

[106]  S. Woosley,et al.  THE REMARKABLE DEATHS OF 9–11 SOLAR MASS STARS , 2015, 1505.06712.

[107]  A. Lyne,et al.  45 years of rotation of the Crab pulsar , 2014, 1410.0886.

[108]  Physik Dept.,et al.  A TWO-PARAMETER CRITERION FOR CLASSIFYING THE EXPLODABILITY OF MASSIVE STARS BY THE NEUTRINO-DRIVEN MECHANISM , 2015, 1503.07522.

[109]  H. Janka,et al.  CORE-COLLAPSE SUPERNOVAE FROM 9 TO 120 SOLAR MASSES BASED ON NEUTRINO-POWERED EXPLOSIONS , 2015, 1510.04643.

[110]  B. Muller,et al.  Non-Radial Instabilities and Progenitor Asphericities in Core-Collapse Supernovae , 2014, 1409.4783.

[111]  O. E. Bronson Messer,et al.  THREE-DIMENSIONAL CORE-COLLAPSE SUPERNOVA SIMULATED USING A 15 M⊙ PROGENITOR , 2015, 1505.05110.

[112]  H. Janka,et al.  NEUTRINO-DRIVEN SUPERNOVA OF A LOW-MASS IRON-CORE PROGENITOR BOOSTED BY THREE-DIMENSIONAL TURBULENT CONVECTION , 2015, 1501.01961.

[113]  R. Fesen,et al.  A 3D kinematic study of the northern ejecta ‘jet’ of the Crab nebula , 2014, 1412.3122.

[114]  H. Janka,et al.  Supernova Neutrinos: Production, Oscillations and Detection , 2015, 1508.00785.

[115]  H. Janka,et al.  NEUTRINO-DRIVEN EXPLOSION OF A 20 SOLAR-MASS STAR IN THREE DIMENSIONS ENABLED BY STRANGE-QUARK CONTRIBUTIONS TO NEUTRINO–NUCLEON SCATTERING , 2015, 1504.07631.

[116]  H. Janka,et al.  THE LAST MINUTES OF OXYGEN SHELL BURNING IN A MASSIVE STAR , 2016, 1605.01393.

[117]  Anu,et al.  Do electron-capture supernovae make neutron stars? First multidimensional hydrodynamic simulations of the oxygen deflagration , 2016, 1602.05771.

[118]  Chris L. Fryer,et al.  THE DISTRIBUTION OF RADIOACTIVE 44Ti IN CASSIOPEIA A , 2016, 1612.02774.

[119]  Tum,et al.  Physics of Core-Collapse Supernovae in Three Dimensions: a Sneak Preview , 2016, 1602.05576.

[120]  C. Ott,et al.  GENERAL-RELATIVISTIC THREE-DIMENSIONAL MULTI-GROUP NEUTRINO RADIATION-HYDRODYNAMICS SIMULATIONS OF CORE-COLLAPSE SUPERNOVAE , 2016, 1604.07848.

[121]  B. Müller,et al.  The Status of Multi-Dimensional Core-Collapse Supernova Models , 2016, Publications of the Astronomical Society of Australia.

[122]  T. Melson,et al.  Supernova simulations from a 3D progenitor model - Impact of perturbations and evolution of explosion properties , 2017, 1705.00620.

[123]  Kyoto,et al.  The Progenitor Dependence of Three-Dimensional Core-Collapse Supernovae , 2017, 1712.01304.

[124]  D. Radice,et al.  Electron-capture and Low-mass Iron-core-collapse Supernovae: New Neutrino-radiation-hydrodynamics Simulations , 2017, 1702.03927.

[125]  H. Janka Neutron Star Kicks by the Gravitational Tug-boat Mechanism in Asymmetric Supernova Explosions: Progenitor and Explosion Dependence , 2016, 1611.07562.

[126]  A. Jerkstrand Spectra of supernovae in the nebular phase , 2017, 1702.06702.

[127]  V. Springel,et al.  Black Hole Formation and Fallback during the Supernova Explosion of a 40 M⊙ Star , 2017, 1710.00838.

[128]  P. Murdin,et al.  Handbook of Supernovae , 2017 .

[129]  H. Janka,et al.  Production and Distribution of 44Ti and 56Ni in a Three-dimensional Supernova Model Resembling Cassiopeia A , 2016, 1610.05643.

[130]  H. Janka,et al.  Nucleosynthesis in the Innermost Ejecta of Neutrino-driven Supernova Explosions in Two Dimensions , 2017, 1701.06786.

[131]  H. Janka,et al.  Light-curve Analysis of Ordinary Type IIP Supernovae Based on Neutrino-driven Explosion Simulations in Three Dimensions , 2017, 1704.03800.

[132]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[133]  H. Janka,et al.  X-Ray Absorption in Young Core-collapse Supernova Remnants , 2018, The Astrophysical Journal.

[134]  H. Janka,et al.  Hydrodynamical Neutron-star Kicks in Electron-capture Supernovae and Implications for the CRAB Supernova , 2018, The Astrophysical Journal.

[135]  S. Couch,et al.  Exploring Fundamentally Three-dimensional Phenomena in High-fidelity Simulations of Core-collapse Supernovae , 2018, The Astrophysical Journal.

[136]  C. Ott,et al.  The Progenitor Dependence of Core-collapse Supernovae from Three-dimensional Simulations with Progenitor Models of 12–40 M⊙ , 2018 .

[137]  S. Woosley,et al.  Emission line models for the lowest mass core-collapse supernovae - I. Case study of a 9 M ☉ one-dimensional neutrino-driven explosion , 2017, 1710.04508.

[138]  D. Radice,et al.  Revival of the fittest: exploding core-collapse supernovae from 12 to 25 M⊙ , 2018, 1801.08148.

[139]  J. Giammarco,et al.  Physics of Eclipsing Binaries. III. Spin–Orbit Misalignment , 2018, The Astrophysical Journal Supplement Series.

[140]  T. Tauris,et al.  Multidimensional simulations of ultrastripped supernovae to shock breakout , 2018, Monthly Notices of the Royal Astronomical Society.

[141]  D. Radice,et al.  A successful 3D core-collapse supernova explosion model , 2018, Monthly Notices of the Royal Astronomical Society.

[142]  S. Valenti,et al.  The aspherical explosion of the Type IIP SN 2017gmr† , 2019, Monthly Notices of the Royal Astronomical Society: Letters.

[143]  N. Soker Possible indications for jittering jets in core collapse supernova explosion simulations , 2019, 1907.13312.

[144]  H. Janka,et al.  Effects of LESA in Three-dimensional Supernova Simulations with Multidimensional and Ray-by-ray-plus Neutrino Transport , 2018, The Astrophysical Journal.

[145]  M. Obergaulinger,et al.  Three-dimensional Core-collapse Supernova Simulations with Multidimensional Neutrino Transport Compared to the Ray-by-ray-plus Approximation , 2018, The Astrophysical Journal.

[146]  K. Nomoto,et al.  Electron-capture Rates in 20Ne for a Forbidden Transition to the Ground State of 20F Relevant to the Final Evolution of High-density O–Ne–Mg Cores , 2019, The Astrophysical Journal.

[147]  B. Côté,et al.  A New Model for Electron-capture Supernovae in Galactic Chemical Evolution , 2019, The Astrophysical Journal.

[148]  Joshua C. Dolence,et al.  Fornax: A Flexible Code for Multiphysics Astrophysical Simulations , 2018, The Astrophysical Journal Supplement Series.

[149]  D. Radice,et al.  Three-dimensional supernova explosion simulations of 9-, 10-, 11-, 12-, and 13-M⊙ stars , 2019, Monthly Notices of the Royal Astronomical Society.

[150]  B. A. Brown,et al.  Discovery of an Exceptionally Strong β-Decay Transition of ^{20}F and Implications for the Fate of Intermediate-Mass Stars. , 2019, Physical review letters.

[151]  K. Kotake,et al.  One-, Two-, and Three-dimensional Simulations of Oxygen-shell Burning Just before the Core Collapse of Massive Stars , 2019, The Astrophysical Journal.

[152]  Linhao Ma,et al.  Angular momentum transport in massive stars and natal neutron star rotation rates , 2019, Monthly Notices of the Royal Astronomical Society.

[153]  D. Radice,et al.  The overarching framework of core-collapse supernova explosions as revealed by 3D fornax simulations , 2019, Monthly Notices of the Royal Astronomical Society.

[154]  J. Powell,et al.  Three-dimensional simulations of neutrino-driven core-collapse supernovae from low-mass single and binary star progenitors , 2018, Monthly Notices of the Royal Astronomical Society.

[155]  H. Janka,et al.  X-Ray and Gamma-Ray Emission from Core-collapse Supernovae: Comparison of Three-dimensional Neutrino-driven Explosions with SN 1987A , 2019, The Astrophysical Journal.

[156]  K. Nomoto,et al.  Electron-capture Supernovae of Super-AGB Stars: Sensitivity on Input Physics , 2019, The Astrophysical Journal.

[157]  K. Nomoto,et al.  Evolution of ONeMg Core in Super-AGB Stars toward Electron-capture Supernovae: Effects of Updated Electron-capture Rate , 2019, The Astrophysical Journal.

[158]  P. K. Panda,et al.  GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼ 3.4 M⊙ , 2020 .

[159]  A. Heger,et al.  The impact of fallback on the compact remnants and chemical yields of core-collapse supernovae , 2020, 2003.04320.

[160]  E. Abdikamalov,et al.  The impact of progenitor asymmetries on the neutrino-driven convection in core-collapse supernovae , 2019, 1911.08819.

[161]  B. Müller,et al.  A Novel multidimensional Boltzmann neutrino transport scheme for core-collapse supernovae. , 2020, Monthly notices of the Royal Astronomical Society.

[162]  N. Soker,et al.  Low-energy core-collapse supernovae in the frame of the jittering jets explosion mechanism , 2019, Monthly Notices of the Royal Astronomical Society.

[163]  H. Janka,et al.  Large-scale Mixing in a Violent Oxygen–Neon Shell Merger Prior to a Core-collapse Supernova , 2019, The Astrophysical Journal.

[164]  R. Diehl,et al.  Properties of gamma-ray decay lines in 3D core-collapse supernova models, with application to SN 1987A and Cas A , 2020, Monthly Notices of the Royal Astronomical Society.

[165]  E. Nakar,et al.  Shock breakouts from red supergiants: analytical and numerical predictions , 2020, Monthly Notices of the Royal Astronomical Society.

[166]  J. Powell,et al.  Three-dimensional core-collapse supernova simulations of massive and rotating progenitors , 2020, Monthly Notices of the Royal Astronomical Society.

[167]  N. Soker Minutes-delayed Jets from a Neutron Star Companion in Core-collapse Supernovae , 2020, The Astrophysical Journal.

[168]  Astrophysics,et al.  The Explosion of Helium Stars Evolved with Mass Loss , 2019, The Astrophysical Journal.

[169]  H. Janka,et al.  Resolution Study for Three-dimensional Supernova Simulations with the Prometheus-Vertex Code , 2019, The Astrophysical Journal.

[170]  Hydrodynamic simulations unravel the progenitor-supernova-remnant connection in SN 1987A , 2019, Astronomy & Astrophysics.

[171]  Matter Mixing in Aspherical Core-collapse Supernovae: Three-dimensional Simulations with Single-star and Binary Merger Progenitor Models for SN 1987A , 2019, The Astrophysical Journal.