Subpolynomial Complexity Classes of Real Functions and Real Numbers

In this paper a definition of computability and complexity of real functions and real numbers is given which is open to methods of recursive function theory as well as to methods of numerical analysis. As an example of application we study the computational complexity of roots and thereby establish a subpolynomial hierarchy of real closed fields.

[1]  Christoph Kreitz,et al.  Theory of Representations , 1985, Theor. Comput. Sci..

[2]  Robert Michael Owens Compound algorithms for digit online arithmetic , 1981, 1981 IEEE 5th Symposium on Computer Arithmetic (ARITH).

[3]  Mary Jane Irwin,et al.  On-line algorithms for the design of pipeline architectures , 1979, ISCA '79.

[4]  Ker-I Ko,et al.  Computational Complexity of Real Functions , 1982, Theor. Comput. Sci..

[5]  Christoph Kreitz Theorie der Darstellungen und ihre Anwendungen in der konstruktiven Analysis , 1984, Informatik Berichte / FernUniversität-Gesamthochschule Hagen / Fachbereich Informatik.

[6]  Klaus Weihrauch,et al.  Type 2 Recursion Theory , 1985, Theor. Comput. Sci..

[7]  Milos D. Ercegovac,et al.  On-Line Algorithms for Division and Multiplication , 1977, IEEE Transactions on Computers.

[8]  Helmut Alt,et al.  Multiplication is the easiest nontrivial arithmetic function , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[9]  Richard P. Brent,et al.  Fast Multiple-Precision Evaluation of Elementary Functions , 1976, JACM.