Soliton Solutions for the Non-autonomous Discrete-time Toda Lattice Equation

We construct N-soliton solution for the non-autonomous discrete-time Toda lattice equation, which is a generalization of the discrete-time Toda equation such that the lattice interval with respect to time is an arbitrary function in time.

[1]  Kenji Kajiwara Yasuhiro Ohta Junkichi Satsuma q-Discrete Toda Molecule Equation , 1993, solv-int/9304001.

[2]  Ryogo Hirota,et al.  Nonlinear Partial Difference Equations III; Discrete Sine-Gordon Equation , 1977 .

[3]  Michio Jimbo,et al.  Solitons: Differential Equations, Symmetries and Infinite Dimensional Algebras , 2000 .

[4]  R. Hirota Discrete Two-Dimensional Toda Molecule Equation , 1987 .

[5]  Yasuhiro Ohta Kenji Kajiwara Junkichi Satsuma Casorati determinant solution for the relativistic Toda lattice equation , 1993, solv-int/9304002.

[6]  W. Schief Isothermic Surfaces in Spaces of Arbitrary Dimension: Integrability, Discretization, and Bäcklund Transformations—A Discrete Calapso Equation , 2001 .

[7]  Alexei Zhedanov,et al.  Discrete Darboux transformations, the discrete-time Toda lattice, and the Askey-Wilson polynomials , 1994 .

[8]  Ryogo Hirota,et al.  Nonlinear Partial Difference Equations. IV. Bäcklund Transformation for the Discrete-Time Toda Equation , 1978 .

[9]  S. Tsujimoto,et al.  Determinant structure of RI type discrete integrable system , 2004 .

[10]  Y. Ohta,et al.  Determinant Formulas for the Toda and Discrete Toda Equations , 1999, solv-int/9908007.

[11]  J. Nimmo,et al.  Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili equations: The wronskian technique , 1983 .

[12]  Yasuhiro Ohta,et al.  Casorati and Discrete Gram Type Determinant Representations of Solutions to the Discrete KP Hierarchy , 1993 .

[13]  広田 良吾,et al.  The direct method in soliton theory , 2004 .

[14]  Ruedi Seiler,et al.  Discrete integrable geometry and physics , 1999 .

[15]  R. Hirota Conserved Quantities of “Random-Time Toda Equation” , 1997 .

[16]  Peter A. Clarkson,et al.  THE DIRECT METHOD IN SOLITON THEORY (Cambridge Tracts in Mathematics 155) , 2006 .

[17]  Ryogo Hirota,et al.  Nonlinear Partial Difference Equations. V. Nonlinear Equations Reducible to Linear Equations , 1979 .

[18]  R. Hirota,et al.  Two-dimensional Toda lattice equations , 1988 .

[19]  J. Satsuma,et al.  q -Difference Version of the Two-Dimensional Toda Lattice Equation , 1991 .

[20]  L. Vinet,et al.  An Integrable Chain and Bi-Orthogonal Polynomials , 1998 .

[21]  J. Satsuma,et al.  Nonautonomous discrete integrable systems , 2000 .