Active control of flexible marine risers

In this article, active control of flexible marine riser angle and the reduction of forced vibration under a time-varying distributed load are considered using boundary control approach. A torque actuator is introduced in the upper riser package and a boundary control law is designed to generate the required signal for riser angle control and vibration reduction with guaranteed closed-loop stability. Exponential stability can be achieved under the free vibration condition. The proposed control is simple, implementable with actual instrumentation, and is independent of system parameters, thus possessing stability robustness to variations in parameters. The design is based on the partial differential equations of the system, thus avoiding some drawbacks associated with the traditional truncated-model-based design approaches. Numerical simulations are provided to verify the effectiveness of the approach presented. r 2008 Elsevier Ltd. All rights reserved.

[1]  Odd M. Faltinsen,et al.  Sea loads on ships and offshore structures , 1990 .

[2]  C. Rahn,et al.  ACTIVE BOUNDARY CONTROL OF ELASTIC CABLES: THEORY AND EXPERIMENT , 1996 .

[3]  Christopher D. Rahn,et al.  Mechatronic control of distributed noise and vibration , 2001 .

[4]  Julio Romano Meneghini,et al.  Numerical simulations of VIV on long flexible cylinders immersed in complex flow fields , 2004 .

[5]  R. H. Cannon,et al.  Initial Experiments on the End-Point Control of a Flexible One-Link Robot , 1984 .

[6]  Sakdirat Kaewunruen,et al.  Nonlinear free vibrations of marine risers/pipes transporting fluid , 2005 .

[7]  Shuzhi Sam Ge,et al.  Variable structure control of a distributed‐parameter flexible beam , 2001 .

[8]  R. Jackson Inequalities , 2007, Algebra for Parents.

[9]  Amr M. Baz,et al.  Boundary Control of Beams Using Active Constrained Layer Damping , 1997 .

[10]  Shuzhi Sam Ge,et al.  Variable structure regulation of a flexible arm with a translational base , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[11]  Darren M. Dawson,et al.  Lyapunov-Based Control of Mechanical Systems , 2000 .

[12]  L. Meirovitch,et al.  On the problem of observation spillover in self-adjoint distributed-parameter systems , 1983 .

[13]  Shuzhi Sam Ge,et al.  Adaptive Neural Network Control of Robotic Manipulators , 1999, World Scientific Series in Robotics and Intelligent Systems.

[14]  M. Balas Active control of flexible systems , 1978 .

[15]  M. H. Patel,et al.  Theory and model tests for the dynamic response of free hanging risers , 1987 .

[16]  Stephen P. Timoshenko,et al.  Vibration problems in engineering , 1928 .

[17]  Svein I. Sagatun,et al.  Exponential Stabilization of a Transversely Vibrating Beam by Boundary Control Via Lyapunov’s Direct Method , 2001 .

[18]  J. Kim Vandiver,et al.  THE LINEAR VIBRATION ANALYSIS OF MARINE RISERS USING THE WKB-BASED DYNAMIC STIFFNESS METHOD , 2002 .

[19]  Fumitoshi Matsuno,et al.  Modeling and feedback control of a flexible arm , 1985, J. Field Robotics.

[20]  F. L. Lewis,et al.  Robust Control for the Tracking of Robot Motion , 1990, 1990 American Control Conference.

[21]  E. Kreyszig,et al.  Advanced Engineering Mathematics. , 1974 .

[22]  S. M. Shahruz,et al.  BOUNDARY CONTROL OF A NON-LINEAR STRING , 1996 .

[23]  Yung-Hsiang Chen,et al.  General drag-force linearization for nonlinear analysis of marine risers , 1989 .

[24]  Bruno Siciliano,et al.  A Singular Perturbation Approach to Control of Lightweight Flexible Manipulators , 1988, Int. J. Robotics Res..

[25]  Subrata K. Chakrabarti,et al.  Review of riser analysis techniques , 1982 .

[26]  R. Blevins,et al.  Flow-Induced Vibration , 1977 .

[27]  J. R. Fowler,et al.  Dynamic Analysis as an Aid to the Design of Marine Risers , 1978 .

[28]  Sen-Yung Lee,et al.  THE FORCED VIBRATION AND BOUNDARY CONTROL OF PRETWISTED TIMOSHENKO BEAMS WITH GENERAL TIME DEPENDENT ELASTIC BOUNDARY CONDITIONS , 2002 .

[29]  Frank L. Lewis,et al.  Flexible-link robot arm control by a feedback linearization/singular perturbation approach , 1994, J. Field Robotics.

[30]  Hiroyuki Iwamoto,et al.  Active boundary control of an Euler–Bernoulli beam for generating vibration-free state , 2007 .

[31]  Shuzhi Sam Ge,et al.  Adaptive neural control of uncertain MIMO nonlinear systems , 2004, IEEE Transactions on Neural Networks.

[32]  Cassio T. Yamamoto,et al.  Numerical simulations of vortex-induced vibration on flexible cylinders , 2004 .

[33]  J. W. Humberston Classical mechanics , 1980, Nature.

[34]  Michael P. Polis,et al.  An example on the effect of time delays in boundary feedback stabilization of wave equations , 1986 .

[35]  Asgeir J. Sørensen,et al.  Optimal setpoint chasing in dynamic positioning of deep‐water drilling and intervention vessels , 2001 .

[36]  Raymond H. Plaut,et al.  Effect Of Axial Load On Forced Vibrations Of Beams , 1993 .

[37]  A. Bokaian,et al.  Natural frequencies of beams under tensile axial loads , 1990 .

[38]  S. M. Shahruz,et al.  Suppression of vibration in stretched strings by the boundary control , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[39]  Juan B. V. Wanderley,et al.  Vortex induced loads on marine risers , 2005 .

[40]  G. K. Furnes ON MARINE RISER RESPONSES IN TIME- AND DEPTH-DEPENDENT FLOWS , 2000 .

[41]  Rong-Fong Fung,et al.  Boundary Control of an Axially Moving String Via Lyapunov Method , 1999 .