Quasi-equilibrium problems with non-self constraint map

In 2016 Aussel, Sultana and Vetrivel developed the concept of projected solution for Nash equilibria. The purpose of this work is to study the same concept of solution, but for quasi-equilibrium problems. Our results recover several existence theorems for quasi-equilibrium problems in the literature. Additionally, we show the existence of projected solutions for quasi-optimization problems, quasi-variational inequality problems, and generalized Nash equilibrium problems.

[1]  N. Yannelis Equilibria in noncooperative models of competition , 1987 .

[2]  F. Giannessi,et al.  On the Theory of Vector Optimization and Variational Inequalities. Image Space Analysis and Separation , 2000 .

[3]  Didier Aussel,et al.  On the Existence of Projected Solutions of Quasi-Variational Inequalities and Generalized Nash Equilibrium Problems , 2016, J. Optim. Theory Appl..

[4]  Massimo Pappalardo,et al.  A Ky Fan Minimax Inequality for Quasiequilibria on Finite-Dimensional Spaces , 2017, Journal of Optimization Theory and Applications.

[5]  Javier Zúñiga,et al.  A note on quasi-equilibrium problems , 2018, Oper. Res. Lett..

[6]  C. J. Himmelberg Fixed points of compact multifunctions , 1972 .

[7]  W. Oettli,et al.  From optimization and variational inequalities to equilibrium problems , 1994 .

[8]  Didier Aussel,et al.  Quasimonotone Quasivariational Inequalities: Existence Results and Applications , 2013, J. Optim. Theory Appl..

[9]  Nicolas Hadjisavvas Continuity and Maximality Properties of Pseudomonotone Operators , 2003 .

[10]  Aparna Mehra,et al.  Evolutionary Variational Inequality Formulation of the Generalized Nash Equilibrium Problem , 2016, J. Optim. Theory Appl..

[11]  Fabián Flores Bazán Existence Theorems for Generalized Noncoercive Equilibrium Problems: The Quasi-Convex Case , 2001, SIAM Journal on Optimization.

[12]  On the covering dimension of the fixed point set of certain multifunctions , 1991 .

[13]  Javier Zúñiga,et al.  Time-Dependent Generalized Nash Equilibrium Problem , 2017, J. Optim. Theory Appl..

[14]  Monica Bianchi,et al.  A Note on Equilibrium Problems with Properly Quasimonotone Bifunctions , 2001, J. Glob. Optim..

[15]  Existence of Nash equilibria for generalized games without upper semicontinuity , 1997 .

[16]  H. Nikaidô,et al.  Note on non-cooperative convex game , 1955 .

[17]  Bronisław Knaster,et al.  Ein Beweis des Fixpunktsatzes für n-dimensionale Simplexe , 1929 .

[18]  A. Göpfert Variational methods in partially ordered spaces , 2003 .

[19]  E. Michael Continuous Selections. I , 1956 .

[20]  Marco Castellani,et al.  An existence result for quasiequilibrium problems in separable Banach spaces , 2015 .

[21]  Didier Aussel,et al.  On Quasimonotone Variational Inequalities , 2004 .

[22]  K. Fan A generalization of Tychonoff's fixed point theorem , 1961 .

[23]  Alfredo N. Iusem,et al.  On certain conditions for the existence of solutions of equilibrium problems , 2008, Math. Program..

[24]  D. Aussel,et al.  Stability of Quasimonotone Variational Inequality Under Sign-Continuity , 2013, J. Optim. Theory Appl..

[25]  R. Tyrrell Rockafellar,et al.  Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.

[26]  K. Fan,et al.  A GENERALIZATION OF TYCHONOFFS FIXED POINT THEOREM , 1961 .

[27]  Reinhard John,et al.  A Note on Minty Variational Inequalities and Generalized Monotonicity , 2001 .

[28]  Marco Castellani,et al.  Refinements of existence results for relaxed quasimonotone equilibrium problems , 2013, J. Glob. Optim..

[29]  A. Iusem,et al.  Existence results for quasi-equilibrium problems , 2014 .

[30]  John Cotrina,et al.  Equilibrium Problems: Existence Results and Applications , 2018 .

[31]  Francisco Facchinei,et al.  Generalized Nash Equilibrium Problems , 2010, Ann. Oper. Res..