Is Your Model Checker on Time? On the Complexity of Model Checking for Timed Modal Logics

This paper studies the structural complexity of model checking for (variations on) the specification formalisms used in the tools CMC and Uppaal, and fragments of a timed alternation-free μ-calculus. For each of the logics we study, we characterize the computational complexity of model checking, as well as its specification and program complexity, using timed automata as our system model.

[1]  Kim G. Larsen,et al.  Model Checking via Reachability Testing for Timed Automata , 1997, TACAS.

[2]  Olivier Danvy,et al.  Lambda-dropping: transforming recursive equations into programs with block structure , 1997, Theor. Comput. Sci..

[3]  Christian N. S. Pedersen,et al.  Finding Maximal Quasiperiodicities in Strings , 1999, CPM.

[4]  Kim G. Larsen,et al.  The power of reachability testing for timed automata , 1998, Theor. Comput. Sci..

[5]  Wang Yi,et al.  Uppaal in a nutshell , 1997, International Journal on Software Tools for Technology Transfer.

[6]  Luca Aceto,et al.  Conservative Extension in Structural Operational Semantics , 1999, Bull. EATCS.

[7]  Thomas A. Henzinger,et al.  HYTECH: A Model Checker for Hybrid Systems , 1997, CAV.

[8]  Dexter Kozen,et al.  RESULTS ON THE PROPOSITIONAL’p-CALCULUS , 2001 .

[9]  Thomas A. Henzinger,et al.  HYTECH: a model checker for hybrid systems , 1997, International Journal on Software Tools for Technology Transfer.

[10]  Satoshi Yamane,et al.  The symbolic model-checking for real-time systems , 1996, Proceedings of the Eighth Euromicro Workshop on Real-Time Systems.

[11]  Rance Cleaveland,et al.  A linear-time model-checking algorithm for the alternation-free modal mu-calculus , 1993, Formal Methods Syst. Des..

[12]  Rance Cleaveland,et al.  A linear-time model-checking algorithm for the alternation-free modal mu-calculus , 1993, Formal Methods Syst. Des..

[13]  Luca Aceto,et al.  Structural Operational Semantics , 1999, Handbook of Process Algebra.

[14]  Jesper G. Henriksen An Expressive Extension of TLC , 1999, ASIAN.

[15]  Rajeev Alur,et al.  Model-Checking in Dense Real-time , 1993, Inf. Comput..

[16]  Pierre Wolper,et al.  An automata-theoretic approach to branching-time model checking , 2000, JACM.

[17]  Kim G. Larsen,et al.  CMC: A Tool for Compositional Model-Checking of Real-Time Systems , 1998, FORTE.

[18]  U. Kohlenbach Foundational and Mathematical Uses of Higher Types , 1999 .

[19]  Amir Pnueli,et al.  Checking that finite state concurrent programs satisfy their linear specification , 1985, POPL.

[20]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[21]  A. Prasad Sistla,et al.  On Model-Checking for Fragments of µ-Calculus , 1993, CAV.

[22]  A. Prasad Sistla,et al.  The complexity of propositional linear temporal logics , 1982, STOC '82.

[23]  Robin Milner,et al.  Algebraic laws for nondeterminism and concurrency , 1985, JACM.

[24]  Philippe Schnoebelen,et al.  The Complexity of Propositional Linear Temporal Logics in Simple Cases (Extended Abstract) , 1998, STACS.

[25]  Kim G. Larsen,et al.  From Timed Automata to Logic - and Back , 1995, MFCS.

[26]  Mihalis Yannakakis,et al.  Minimum and maximum delay problems in real-time systems , 1991, Formal Methods Syst. Des..

[27]  Dexter Kozen,et al.  Results on the Propositional µ-Calculus , 1982, ICALP.

[28]  Sergio Yovine,et al.  KRONOS: a verification tool for real-time systems , 1997, International Journal on Software Tools for Technology Transfer.

[29]  Søren Riis A complexity gap for tree resolution , 2001, computational complexity.

[30]  R. Alur Techniques for automatic verification of real-time systems , 1991 .