The use of augmented loss functions for estimating dynamic energy budget parameters

Abstract We propose an extension of a parameter-free loss function for the estimation of Dynamic Energy Budget parameters for a set of related species that is symmetric in the role of data and predictions. The extension allows that particular parameters might vary, but not by much, among species, while the degree of variation is controlled by weight coefficients. We discuss the choice of these coefficients and illustrate the application with an example of two species of catfish, with their mutual hybrids. In our simultaneous parameter estimation for this example, we could reduce the variation in a parameter, here the energy conductance, substantially with a minor effect on the goodness of fit. We selected this parameter among the ones that varied, because its value was poorly determined by the data. We discuss this example in some detail. The software for implementing this augmented loss function has been implemented in the available software DEBtool_M on Github ( www.github.com/add-my-pet/DEBtool_M ).

[1]  Sebastiaan A.L.M. Kooijman,et al.  The “covariation method” for estimating the parameters of the standard Dynamic Energy Budget model I: Philosophy and approach , 2011 .

[2]  Sebastiaan A.L.M. Kooijman,et al.  Body size as emergent property of metabolism , 2019, Journal of Sea Research.

[3]  Sebastiaan A.L.M. Kooijman,et al.  Energy budgets can explain body size relations , 1986 .

[4]  S. Kooijman,et al.  Quantitative aspects of metabolic organization: a discussion of concepts. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[5]  S. Kooijman,et al.  Can DEB models infer metabolic differences between intertidal and subtidal morphotypes of the Antarctic limpet Nacella concinna (Strebel, 1908)? , 2020 .

[6]  Sebastiaan A.L.M. Kooijman,et al.  The “covariation method” for estimating the parameters of the standard Dynamic Energy Budget model II: Properties and preliminary patterns , 2011 .

[7]  Rosemary A Renaut,et al.  Regularization parameter estimation for underdetermined problems by the χ 2 principle with application to 2D focusing gravity inversion , 2014, 1402.3365.

[8]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[9]  Gonçalo M. Marques,et al.  The AmP project: Comparing species on the basis of dynamic energy budget parameters , 2018, PLoS Comput. Biol..

[10]  Sebastiaan A.L.M. Kooijman,et al.  Metabolic acceleration in animal ontogeny: An evolutionary perspective , 2014 .

[11]  Sebastiaan A.L.M. Kooijman,et al.  Altricial-precocial spectra in animal kingdom , 2019, Journal of Sea Research.

[12]  Rosemary A. Renaut,et al.  Computational Statistics and Data Analysis , 2022 .

[13]  Sebastiaan A.L.M. Kooijman,et al.  Fitting multiple models to multiple data sets , 2019, Journal of Sea Research.

[14]  Sebastiaan A.L.M. Kooijman,et al.  The energetic basis of population growth in animal kingdom , 2020 .

[15]  Sebastiaan A.L.M. Kooijman,et al.  Waste to hurry: Dynamic energy budgets explain the need of wasting to fully exploit blooming resources. , 2013 .

[16]  S. Kooijman,et al.  From food‐dependent statistics to metabolic parameters, a practical guide to the use of dynamic energy budget theory , 2008, Biological reviews of the Cambridge Philosophical Society.

[17]  Bas Kooijman,et al.  Dynamic Energy Budget Theory for Metabolic Organisation , 2005 .

[18]  S. Kooijman,et al.  Why big-bodied animal species cannot evolve a waste-to-hurry strategy , 2019, Journal of Sea Research.

[19]  S. Kooijman,et al.  Comparing loss functions and interval estimates for survival data , 2020 .

[20]  C. Cauty,et al.  A comparative study on morphology, growth rate and reproduction of Clarias gariepinus (Burchell, 1822), Heterobranchus longifilis Valenciennes, 1840, and their reciprocal hybrids (Pisces, Clariidae) , 1992 .

[21]  Starrlight Augustine,et al.  The bijection from data to parameter space with the standard DEB model quantifies the supply-demand spectrum. , 2014, Journal of theoretical biology.