Goodness-of-Fit Tests for Functional Data

Economic data are frequently generated by stochastic processes that can be modelled as occurring in continuous time. That is, the data are treated as realizations of a random function (functional data). Sometimes an economic theory model specifies the process up to a finite-dimensional parameter. This paper develops a test of the null hypothesis that a given functional data set was generated by a specified parametric model of a continuous-time process. The alternative hypothesis is non-parametric. A random function is a form of infinite-dimensional random variable, and the test presented here a generalization of the familiar Cramer-von Mises test to an infinite dimensional random variable. The test is illustrated by using it to test the hypothesis that a sample of wage paths was generated by a certain equilibrium job search model. Simulation studies show that the test has good finite-sample performance. Copyright (C) The Author(s). Journal compilation (C) Royal Economic Society 2009

[1]  Michael G. Akritas,et al.  Recent Advances and Trends in Nonparametric Statistics , 2003 .

[2]  B. Silverman,et al.  Functional Data Analysis , 1997 .

[3]  Geert Ridder,et al.  Panel Data and Labor Market Studies , 1990 .

[4]  Myung Suk Kim,et al.  Sizes of two bootstrap-based nonparametric specification tests for the drift function in continuous time models , 2006, Comput. Stat. Data Anal..

[5]  Hengyan Li,et al.  Nonparametric Specification Testing for Continuous-Time Models with Applications to Term Structure of Interest Rates , 2005 .

[6]  Y. Chen [The change of serum alpha 1-antitrypsin level in patients with spontaneous pneumothorax]. , 1995, Zhonghua jie he he hu xi za zhi = Zhonghua jiehe he huxi zazhi = Chinese journal of tuberculosis and respiratory diseases.

[7]  A DATA-DRIVEN NONPARAMETRIC SPECIFICATION TEST FOR DYNAMIC REGRESSION MODELS , 2006, Econometric Theory.

[8]  P. Hall,et al.  On properties of functional principal components analysis , 2006 .

[9]  G. Neuhaus Asymptotic power properties of the Cramér-von Mises test under contiguous alternatives , 1976 .

[10]  Daniel Miles,et al.  On the performance of nonparametric specification tests in regression models , 2003, Comput. Stat. Data Anal..

[11]  G. Neuhaus,et al.  A Central Limit Theorem under Contiguous Alternatives , 1975 .

[12]  N. Kiefer,et al.  Equilibrium Search Models and the Transition from School to Work , 1997 .

[13]  Henry W. Altland,et al.  Applied Functional Data Analysis , 2003, Technometrics.

[14]  Wolfgang Jank,et al.  Functional Data Analysis in Electronic Commerce Research , 2006, math/0609173.

[15]  Juan Antonio Cuesta-Albertos,et al.  The random projection method in goodness of fit for functional data , 2007, Comput. Stat. Data Anal..

[16]  James O. Ramsay,et al.  Applied Functional Data Analysis: Methods and Case Studies , 2002 .

[17]  Gerard J. van den Berg,et al.  Equilibrium search with continuous productivity dispersion: theory and nonparametric estimation , 2000 .

[18]  P. Hall,et al.  Permutation tests for equality of distributions in high‐dimensional settings , 2002 .

[19]  E. Guerre,et al.  OPTIMAL MINIMAX RATES FOR NONPARAMETRIC SPECIFICATION TESTING IN REGRESSION MODELS , 2002, Econometric Theory.

[20]  G. Neuhaus,et al.  On Weak Convergence of Stochastic Processes with Multidimensional Time Parameter , 1971 .

[21]  Jane-Ling Wang,et al.  Functional canonical analysis for square integrable stochastic processes , 2003 .

[22]  Emmanuel Guerre,et al.  Data-Driven Rate-Optimal Specification Testing in Regression Models , 2004 .

[23]  Jane-ling Wang,et al.  Functional linear regression analysis for longitudinal data , 2005, math/0603132.

[24]  Dale T. Mortensen,et al.  Wage Differentials, Employer Size, and Unemployment , 1998 .

[25]  G. Neumann,et al.  On‐the‐Job Search and the Wage Distribution , 2005, Journal of Labor Economics.

[26]  James Durbin,et al.  Weak convergence of the sample distribution function when parameters are estimated , 1973 .

[27]  R. Fraiman,et al.  Kernel-based functional principal components ( , 2000 .

[28]  J. Lamperti ON CONVERGENCE OF STOCHASTIC PROCESSES , 1962 .

[29]  J. A. Cuesta-Albertos,et al.  Random projections and goodness-of-fit tests in infinite-dimensional spaces , 2006 .

[30]  Qi Li,et al.  Consistent Model Specification Tests : Kernel-Based Tests versus Bierens ' ICM Tests , 2008 .

[31]  Philippe Bonnet,et al.  Minimal invariant varieties and first integrals for algebraic foliations , 2006, math/0602274.

[32]  Yanqin Fan,et al.  Consistent model specification tests : Omitted variables and semiparametric functional forms , 1996 .

[33]  A CONSISTENT MODEL SPECIFICATION TEST BASED ON THE KERNEL SUM OF SQUARES OF RESIDUALS , 2002 .

[34]  Geoffrey S. Watson,et al.  Distribution Theory for Tests Based on the Sample Distribution Function , 1973 .

[35]  Felix Schlenk,et al.  Proof of Theorem 3 , 2005 .

[36]  Joel L. Horowitz,et al.  An Adaptive, Rate-Optimal Test of a Parametric Mean-Regression Model Against a Nonparametric Alternative , 2001 .

[37]  Gerard J. van den Berg,et al.  Equilibrium Search with Continuous Productivity Dispersion: Theory and Non-Parametric Estimation , 1998 .

[38]  Z. Cai,et al.  Nonparametric Methods in Continuous-Time Finance: A Selective Review , 2003 .

[39]  Qi Li,et al.  CONSISTENT MODEL SPECIFICATION TESTS , 2000, Econometric Theory.