Schrödinger-Heisenberg Variational Quantum Algorithms.

Recent breakthroughs have opened the possibility of intermediate-scale quantum computing with tens to hundreds of qubits, and shown the potential for solving classical challenging problems, such as in chemistry and condensed matter physics. However, the high accuracy needed to surpass classical computers poses a critical demand on the circuit depth, which is severely limited by the non-negligible gate infidelity, currently around 0.1%-1%. The limited circuit depth places restrictions on the performance of variational quantum algorithms (VQA) and prevents VQAs from exploring desired nontrivial quantum states. To resolve this problem, we propose a paradigm of Schrödinger-Heisenberg variational quantum algorithms (SHVQA). Using SHVQA, the expectation values of operators on states that require very deep circuits to prepare can now be efficiently measured by rather shallow circuits. The idea is to incorporate a virtual Heisenberg circuit, which acts effectively on the measurement observables, into a real shallow Schrödinger circuit, which is implemented realistically on the quantum hardware. We choose a Clifford virtual circuit, whose effect on the Hamiltonian can be seen as efficient classical processing. Yet, it greatly enlarges the state's expressivity, realizing much larger unitary t designs. Our method enables accurate quantum simulation and computation that otherwise are only achievable with much deeper circuits or more accurate operations conventionally. This has been verified in our numerical experiments for a better approximation of random states, higher-fidelity solutions to the XXZ model, and the electronic structure Hamiltonians of small molecules. Thus, together with effective quantum error mitigation, our work paves the way for realizing accurate quantum computing algorithms with near-term quantum devices.

[1]  Haibin Zhang,et al.  Quantum computational advantage via 60-qubit 24-cycle random circuit sampling. , 2021, Science bulletin.

[2]  Hao Li,et al.  Phase-Programmable Gaussian Boson Sampling Using Stimulated Squeezed Light. , 2021, Physical review letters.

[3]  Haibin Zhang,et al.  Strong Quantum Computational Advantage Using a Superconducting Quantum Processor. , 2021, Physical review letters.

[4]  Chang-Yu Hsieh,et al.  Variational Quantum-Neural Hybrid Eigensolver. , 2021, Physical review letters.

[5]  Patrick J. Coles,et al.  Connecting ansatz expressibility to gradient magnitudes and barren plateaus , 2021, PRX Quantum.

[6]  M. Cerezo,et al.  Variational quantum algorithms , 2020, Nature Reviews Physics.

[7]  Jian-Wei Pan,et al.  Quantum computational advantage using photons , 2020, Science.

[8]  Keisuke Fujii,et al.  Qulacs: a fast and versatile quantum circuit simulator for research purpose , 2020, Quantum.

[9]  Xiao Yuan,et al.  Hybrid Quantum-Classical Algorithms and Quantum Error Mitigation , 2020, Journal of the Physical Society of Japan.

[10]  Chang-Yu Hsieh,et al.  Differentiable quantum architecture search , 2020, Quantum Science and Technology.

[11]  Jason Iaconis,et al.  Quantum State Complexity in Computationally Tractable Quantum Circuits , 2020, PRX Quantum.

[12]  P. Barkoutsos,et al.  Quantum HF/DFT-embedding algorithms for electronic structure calculations: Scaling up to complex molecular systems. , 2020, The Journal of chemical physics.

[13]  Qi Zhao,et al.  Quantum Simulation with Hybrid Tensor Networks. , 2020, Physical review letters.

[14]  M. Sayyafzadeh,et al.  An accelerated gradient algorithm for well control optimization , 2020 .

[15]  Takahashi Keiko,et al.  Data Source , 2020, Definitions.

[16]  Yuya O. Nakagawa,et al.  Orbital optimized unitary coupled cluster theory for quantum computer , 2019, 1910.11526.

[17]  John C. Platt,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[18]  David Gosset,et al.  Classical algorithms for quantum mean values , 2019, Nature Physics.

[19]  K. B. Whaley,et al.  A non-orthogonal variational quantum eigensolver , 2019, New Journal of Physics.

[20]  Ryan Babbush,et al.  Increasing the Representation Accuracy of Quantum Simulations of Chemistry without Extra Quantum Resources , 2019, Physical Review X.

[21]  Ying Li,et al.  Theory of variational quantum simulation , 2018, Quantum.

[22]  Alán Aspuru-Guzik,et al.  Quantum computational chemistry , 2018, Reviews of Modern Physics.

[23]  Ryan Babbush,et al.  Barren plateaus in quantum neural network training landscapes , 2018, Nature Communications.

[24]  Andrew W. Cross,et al.  The IBM Q experience and QISKit open-source quantum computing software , 2018 .

[25]  W. W. Ho,et al.  Efficient variational simulation of non-trivial quantum states , 2018, SciPost Physics.

[26]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[27]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[28]  S. Lloyd,et al.  Entanglement, quantum randomness, and complexity beyond scrambling , 2017, Journal of High Energy Physics.

[29]  J. Gambetta,et al.  Tapering off qubits to simulate fermionic Hamiltonians , 2017, 1701.08213.

[30]  J. McClean,et al.  Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz , 2017, Quantum Science and Technology.

[31]  Kristan Temme,et al.  Error Mitigation for Short-Depth Quantum Circuits. , 2016, Physical review letters.

[32]  Ying Li,et al.  Efficient Variational Quantum Simulator Incorporating Active Error Minimization , 2016, 1611.09301.

[33]  Markus Grassl,et al.  The Clifford group fails gracefully to be a unitary 4-design , 2016, 1609.08172.

[34]  F. Brandão,et al.  Local Random Quantum Circuits are Approximate Polynomial-Designs , 2016, Communications in Mathematical Physics.

[35]  Huangjun Zhu Multiqubit Clifford groups are unitary 3-designs , 2015, 1510.02619.

[36]  Alán Aspuru-Guzik,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[37]  M. Hastings,et al.  Progress towards practical quantum variational algorithms , 2015, 1507.08969.

[38]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[39]  F. Brandão,et al.  Exponential Decay of Correlations Implies Area Law , 2014, Communications in Mathematical Physics.

[40]  Xie Chen,et al.  Quantum circuit complexity of one-dimensional topological phases , 2014, 1401.3820.

[41]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[42]  Fernando G. S. L. Brandão,et al.  Exponential Decay of Correlations Implies Area Law , 2012, Communications in Mathematical Physics.

[43]  Xiao-Gang Wen,et al.  Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order , 2010, 1004.3835.

[44]  F. Verstraete,et al.  Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems , 2008, 0907.2796.

[45]  F. Verstraete,et al.  Lieb-Robinson bounds and the generation of correlations and topological quantum order. , 2006, Physical review letters.

[46]  J. Eisert,et al.  Entanglement in Graph States and its Applications , 2006, quant-ph/0602096.

[47]  Xiao-Gang Wen,et al.  Detecting topological order in a ground state wave function. , 2005, Physical review letters.

[48]  J. Preskill,et al.  Topological entanglement entropy. , 2005, Physical review letters.

[49]  G. Vidal,et al.  Ground state entanglement in quantum spin chains , 2003, Quantum Inf. Comput..

[50]  G. Vidal,et al.  Entanglement in quantum critical phenomena. , 2002, Physical review letters.

[51]  A. Kitaev,et al.  Fermionic Quantum Computation , 2000, quant-ph/0003137.

[52]  R. Feynman Simulating physics with computers , 1999 .

[53]  D. Gottesman The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.

[54]  S. G. Hoggar,et al.  t-Designs in Projective Spaces , 1982, Eur. J. Comb..