A quantitative measure of internal cavitation in superplastic alloys using photoacoustic analysis

Internal cavities often develop during the deformation of superplastic alloys. Experiments were conducted to determine whether a nondestructive photoacoustic method may be used to detect the presence of internal cavities in two different commercial Al-based alloys. An analytical procedure was developed to provide quantitative information on the volume fraction of cavitation. The results confirm that the photoacoustic signal can be used to detect the presence of cavities, and it is demonstrated that the quantitative measurements derived from the photoacoustic data are consistent with observations obtained by sectioning and standard metallographic techniques.

[1]  Amiya K. Mukherjee,et al.  Superplasticity in advanced materials , 1993 .

[2]  Yan Ma,et al.  A first report on the use of a non-destructive technique to investigate cavitation in a superplastic aluminum alloy , 1992 .

[3]  H. Oikawa Hot Deformation of Aluminum Alloys , 1990 .

[4]  M. Mayo,et al.  Superplasticity in metals, ceramics, and intermetallics , 1990 .

[5]  C. So,et al.  Acoustic transfer function of a photoacoustic cell: the transmission matrix method , 1989 .

[6]  T. Langdon,et al.  Cavitation and fracture in the superplastic Al-33% Cu eutectic alloy , 1989 .

[7]  R. Takaue,et al.  Detection of surface grooves and subsurface inhomogeneities in metals by transmission correlation photoacoustics , 1986 .

[8]  A. Rakhshani,et al.  Determination of the Thickness and Refractive Index of Cu2O Thin Film Using Thermal and Optical Interferometry , 1986 .

[9]  Minoru Taya,et al.  Effective thermal conductivity of a misoriented short fiber composite , 1985 .

[10]  J. Baumann,et al.  Determining photothermally the thickness of a buried layer , 1985 .

[11]  A. Mandelis,et al.  Quantitative Depth Profiling of Biporous Nickel Electrodes by Frequency-Domain Laser-Induced Photoacoustic Spectroscopy , 1985 .

[12]  J. Wert,et al.  Intergranular fracture in an AlLiCuMgZr alloy , 1985 .

[13]  G. Niklasson,et al.  Optical properties and solar selectivity of coevaporated Co‐Al2O3 composite films , 1984 .

[14]  E. A. Starke,et al.  Aluminum-lithium alloys II , 1984 .

[15]  C. Bampton,et al.  Microstructural observations of superplastic cavitation in fine grained 7475-Ai , 1982 .

[16]  A. Rosencwaig,et al.  Thermal‐wave depth profiling: Theory , 1982 .

[17]  F. Scudieri,et al.  Photoacoustic determination of thermal conductivity of ion implanted silicon , 1982 .

[18]  T. Langdon The mechanical properties of superplastic materials , 1982 .

[19]  T. Langdon Fracture processes in superplastic flow , 1982 .

[20]  L. Favro,et al.  Photoacoustic phase signatures of closed cracks , 1982 .

[21]  J. Pelzl,et al.  Frequency dependence of resonant photoacoustic cells: The extended Helmholtz resonator , 1981 .

[22]  P. Heitman,et al.  Surface flaw detection in structural ceramics by scanning photoacoustic spectroscopy , 1980 .

[23]  Nils C. Fernelius,et al.  Helmholtz resonance effect in photoacoustic cells. , 1979, Applied optics.

[24]  T. Langdon,et al.  The fracture characteristics of a superplastic single phase copper alloy , 1978 .

[25]  G. F. Hawkins,et al.  Surface and subsurface structure of solids by laser photoacoustic spectroscopy , 1978 .

[26]  L. C. Aamodt,et al.  Size considerations in the design of cells for photoacoustic spectroscopy , 1977 .

[27]  G. C. Wetsel,et al.  Generalized theory of the photoacoustic effect , 1976 .