Deep learning-based image-analysis identifies a DAT-negative subpopulation of dopaminergic neurons in the lateral Substantia nigra

Here we present a deep learning-based image analysis platform (DLAP), tailored to autonomously quantify numbers of neuronal subtypes in defined areas, and of fluorescence signals, derived from RNAscope probes or immunohistochemistry, in defined cellular compartments. As proof-of-principle, we utilized DLAP to analyse subtypes of dopaminergic midbrain neurons in mouse and human brain-sections. These neurons modulate complex behaviour like voluntary movement, and are differentially affected in Parkinson’s and other diseases. DLAP allows the analysis of large cell numbers from different species, and facilitates the identification of small cellular subpopulations, based on differential mRNA- or protein-expression, and anatomical location. Using DLAP, we identified a small subpopulation of dopaminergic midbrain neurons (~5%), mainly located in the very lateral Substantia nigra (SN), that was immunofluorescence-negative for the plasmalemma dopamine transporter (DAT), with ~30% smaller cell-bodies, and a ~4-fold higher likelihood of calbindin-d28k co-expression. These results have important implications, as DAT is crucial for dopamine-signalling, and its expression is commonly used as marker for dopaminergic SN neurons.

[1]  R. González-Ramírez,et al.  The role of voltage-gated calcium channels in the pathogenesis of Parkinson’s disease , 2022, The International journal of neuroscience.

[2]  Peter S. Freestone,et al.  Subthalamic nucleus exclusively evokes dopamine release in the tail of the striatum , 2022, Journal of neurochemistry.

[3]  B. Liss,et al.  β2-subunit alternative splicing stabilizes Cav2.3 Ca2+ channel activity during continuous midbrain dopamine neuron-like activity , 2022, eLife.

[4]  D. Perrais,et al.  A synaptomic analysis reveals dopamine hub synapses in the mouse striatum , 2022, Nature communications.

[5]  Christopher J. Knowlton,et al.  Cav1.3 calcium channels are full-range linear amplifiers of firing frequencies in lateral DA SN neurons , 2022, Science advances.

[6]  Evan Z. Macosko,et al.  Single-cell genomic profiling of human dopamine neurons identifies a population that selectively degenerates in Parkinson’s disease , 2022, Nature Neuroscience.

[7]  W. Rausch,et al.  From the tyrosine hydroxylase hypothesis of Parkinson’s disease to modern strategies: a short historical overview , 2022, Journal of Neural Transmission.

[8]  Gabriel dos Passos Gomes,et al.  On scientific understanding with artificial intelligence , 2022, Nature Reviews Physics.

[9]  G. Lubec,et al.  The Lack of Dopamine Transporter Is Associated With Conditional Associative Learning Impairments and Striatal Proteomic Changes , 2022, Frontiers in Psychiatry.

[10]  D. Sulzer,et al.  Subcellular proteomics of dopamine neurons in the mouse brain , 2022, eLife.

[11]  P. Henny,et al.  Dendritic Architecture Predicts in vivo Firing Pattern in Mouse Ventral Tegmental Area and Substantia Nigra Dopaminergic Neurons , 2021, Frontiers in Neural Circuits.

[12]  Lief E. Fenno,et al.  Sox6 expression distinguishes dorsally and ventrally biased dopamine neurons in the substantia nigra with distinctive properties and embryonic origins , 2021, Cell Reports.

[13]  E. Schuman,et al.  The translatome of neuronal cell bodies, dendrites, and axons , 2021, Proceedings of the National Academy of Sciences.

[14]  M. Unser,et al.  DeepImageJ: A user-friendly environment to run deep learning models in ImageJ , 2021, Nature Methods.

[15]  Shaun M. Kandathil,et al.  A guide to machine learning for biologists , 2021, Nature Reviews Molecular Cell Biology.

[16]  Y. Kozorovitskiy,et al.  Cell-type and subcellular compartment-specific APEX2 proximity labeling reveals activity-dependent nuclear proteome dynamics in the striatum , 2021, Nature Communications.

[17]  Ori J. Lieberman,et al.  Subcellular and regional localization of mRNA translation in midbrain dopamine neurons , 2021, bioRxiv.

[18]  H. Cai,et al.  Diverse midbrain dopaminergic neuron subtypes and implications for complex clinical symptoms of Parkinson’s disease , 2021, Ageing and neurodegenerative diseases.

[19]  T. Foltynie,et al.  Progress towards therapies for disease modification in Parkinson's disease , 2021, The Lancet Neurology.

[20]  Talia N. Lerner,et al.  Striatonigrostriatal circuit architecture for disinhibition of dopamine signaling , 2021, bioRxiv.

[21]  Q. Xiong,et al.  Integrating the Roles of Midbrain Dopamine Circuits in Behavior and Neuropsychiatric Disease , 2021, Biomedicines.

[22]  Anne E Carpenter,et al.  Developing open-source software for bioimage analysis: opportunities and challenges , 2021, F1000Research.

[23]  A. Scimemi,et al.  Regulation of Glutamate, GABA and Dopamine Transporter Uptake, Surface Mobility and Expression , 2021, Frontiers in Cellular Neuroscience.

[24]  M. Farrer,et al.  Dynamic control of the dopamine transporter in neurotransmission and homeostasis , 2021, NPJ Parkinson's disease.

[25]  D. Bers,et al.  CaMKII and PKA-dependent phosphorylation co-regulate nuclear localization of HDAC4 in adult cardiomyocytes , 2021, Basic Research in Cardiology.

[26]  M. Amalric,et al.  Refining the Identity and Role of Kv4 Channels in Mouse Substantia Nigra Dopaminergic Neurons , 2021, eNeuro.

[27]  A. Zalesky,et al.  Dopamine Transporter Is a Master Regulator of Dopaminergic Neural Network Connectivity , 2021, The Journal of Neuroscience.

[28]  N. Greenwald,et al.  DeepCell Kiosk: scaling deep learning–enabled cellular image analysis with Kubernetes , 2021, Nature methods.

[29]  Kip T. Dooley Effects of Sex and Autism on Oxytocin Receptors in the Substantia Nigra of the Human Brain , 2021 .

[30]  Christopher J. Obara,et al.  Advances in Confocal Microscopy and Selected Applications. , 2021, Methods in molecular biology.

[31]  J. Davies,et al.  Automation in the Life Science Research Laboratory , 2020, Frontiers in Bioengineering and Biotechnology.

[32]  O. Andreassen,et al.  The polygenic architecture of schizophrenia — rethinking pathogenesis and nosology , 2020, Nature Reviews Neurology.

[33]  Xiao-Jing Wang,et al.  Artificial Neural Networks for Neuroscientists: A Primer , 2020, Neuron.

[34]  Claire M. Brown,et al.  Tutorial: guidance for quantitative confocal microscopy , 2020, Nature Protocols.

[35]  D. Surmeier,et al.  Selective neuronal vulnerability in Parkinson's disease. , 2020, Progress in brain research.

[36]  R. Awatramani,et al.  Classification of Midbrain Dopamine Neurons Using Single-Cell Gene Expression Profiling Approaches , 2020, Trends in Neurosciences.

[37]  R. Wiesner,et al.  Mitochondrial Dysfunction Combined with High Calcium Load Leads to Impaired Antioxidant Defense Underlying the Selective Loss of Nigral Dopaminergic Neurons , 2020, The Journal of Neuroscience.

[38]  Cara R Brodie Overcoming Autofluorescence (AF) and Tissue Variation in Image Analysis of In Situ Hybridization. , 2020, Methods in molecular biology.

[39]  A. Fassina,et al.  Loss of BAP1 in Pheochromocytomas and Paragangliomas Seems Unrelated to Genetic Mutations , 2019, Endocrine Pathology.

[40]  O. Pongs,et al.  Cav2.3 channels contribute to dopaminergic neuron loss in a model of Parkinson’s disease , 2019, Nature Communications.

[41]  L. Olson,et al.  Off-Target Effects in Transgenic Mice: Characterization of Dopamine Transporter (DAT)-Cre Transgenic Mouse Lines Exposes Multiple Non-Dopaminergic Neuronal Clusters Available for Selective Targeting within Limbic Neurocircuitry , 2019, eNeuro.

[42]  P. Whiting,et al.  Single-Cell Quantification of mRNA Expression in The Human Brain , 2019, Scientific Reports.

[43]  P. Kaeser,et al.  Mechanisms and regulation of dopamine release , 2019, Current Opinion in Neurobiology.

[44]  M. Vila Neuromelanin, aging, and neuronal vulnerability in Parkinson's disease , 2019, Movement disorders : official journal of the Movement Disorder Society.

[45]  Shidan Wang,et al.  Pathology Image Analysis Using Segmentation Deep Learning Algorithms. , 2019, The American journal of pathology.

[46]  William Graf,et al.  Deep learning for cellular image analysis , 2019, Nature Methods.

[47]  J. Roeper,et al.  In vivo functional diversity of midbrain dopamine neurons within identified axonal projections , 2019, bioRxiv.

[48]  R. Diem,et al.  Calcium-Binding Proteins as Determinants of Central Nervous System Neuronal Vulnerability to Disease , 2019, International journal of molecular sciences.

[49]  Hannah V. McCue,et al.  Calcium Sensors in Neuronal Function and Dysfunction. , 2019, Cold Spring Harbor perspectives in biology.

[50]  Anissa Abi-Dargham,et al.  Schizophrenia, Dopamine and the Striatum: From Biology to Symptoms , 2019, Trends in Neurosciences.

[51]  Romain F. Laine,et al.  Artificial intelligence for microscopy: what you should know. , 2019, Biochemical Society transactions.

[52]  E. Mann,et al.  Plasticity in striatal dopamine release is governed by release-independent depression and the dopamine transporter , 2018, Nature Communications.

[53]  Matthew A Dabarno,et al.  Deep learning for high-throughput quantification of oligodendrocyte ensheathment at single-cell resolution , 2018, Communications Biology.

[54]  Thomas Brox,et al.  U-Net: deep learning for cell counting, detection, and morphometry , 2018, Nature Methods.

[55]  R. G. Correa,et al.  Dopamine: Functions, Signaling, and Association with Neurological Diseases , 2018, Cellular and Molecular Neurobiology.

[56]  Ilia V. Safonov,et al.  An Overview of Watershed Algorithm Implementations in Open Source Libraries , 2018, J. Imaging.

[57]  Anna-Maija Penttinen,et al.  Implementation of deep neural networks to count dopamine neurons in substantia nigra , 2018, The European journal of neuroscience.

[58]  Anne E Carpenter,et al.  CellProfiler 3.0: Next-generation image processing for biology , 2018, PLoS biology.

[59]  Aaron Carass,et al.  Why rankings of biomedical image analysis competitions should be interpreted with care , 2018, Nature Communications.

[60]  J. Berke What does dopamine mean? , 2018, Nature Neuroscience.

[61]  L. Rohde,et al.  The dopamine transporter role in psychiatric phenotypes , 2018, American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics.

[62]  John T. Williams,et al.  The Evolving Understanding of Dopamine Neurons in the Substantia Nigra and Ventral Tegmental Area. , 2018, Annual review of physiology.

[63]  Iasonas Kokkinos,et al.  DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[64]  Jan Gründemann,et al.  Cell-Specific RNA Quantification in Human SN DA Neurons from Heterogeneous Post-mortem Midbrain Samples by UV-Laser Microdissection and RT-qPCR. , 2018, Methods in molecular biology.

[65]  H. Sebastian Seung,et al.  Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification , 2017, Bioinform..

[66]  George Papandreou,et al.  Rethinking Atrous Convolution for Semantic Image Segmentation , 2017, ArXiv.

[67]  Melissa K. Edler,et al.  Single low doses of MPTP decrease tyrosine hydroxylase expression in the absence of overt neuron loss , 2017, Neurotoxicology.

[68]  Yolanda T. Chong,et al.  Automated analysis of high‐content microscopy data with deep learning , 2017, Molecular systems biology.

[69]  Danielle L. Brown,et al.  Bias in image analysis and its solution: unbiased stereology , 2017, Journal of toxicologic pathology.

[70]  Lawrence O. Hall,et al.  Unbiased estimation of cell number using the automatic optical fractionator , 2017, Journal of Chemical Neuroanatomy.

[71]  Elyssa B. Margolis,et al.  Ventral tegmental area: cellular heterogeneity, connectivity and behaviour , 2017, Nature Reviews Neuroscience.

[72]  D. James Surmeier,et al.  Selective neuronal vulnerability in Parkinson disease , 2017, Nature Reviews Neuroscience.

[73]  Peter Bankhead,et al.  QuPath: Open source software for digital pathology image analysis , 2017, Scientific Reports.

[74]  N. Uchida,et al.  Opposite initialization to novel cues in dopamine signaling in ventral and posterior striatum in mice , 2016, eLife.

[75]  O. Stegle,et al.  Deep learning for computational biology , 2016, Molecular systems biology.

[76]  Amy R. Peck,et al.  Validation of tumor protein marker quantification by two independent automated immunofluorescence image analysis platforms , 2016, Modern Pathology.

[77]  B. Liss,et al.  Converging roles of ion channels, calcium, metabolic stress, and activity pattern of Substantia nigra dopaminergic neurons in health and Parkinson's disease , 2016, Journal of neurochemistry.

[78]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[79]  Ali Ghazizadeh,et al.  Dopamine Neurons Encoding Long-Term Memory of Object Value for Habitual Behavior , 2015, Cell.

[80]  Xin Wu,et al.  Neurostereology protocol for unbiased quantification of neuronal injury and neurodegeneration , 2015, Front. Aging Neurosci..

[81]  Talia N. Lerner,et al.  Intact-Brain Analyses Reveal Distinct Information Carried by SNc Dopamine Subcircuits , 2015, Cell.

[82]  M. Amalric,et al.  Kv4 channel blockade reduces motor and neuropsychiatric symptoms in rodent models of Parkinson's disease. , 2015, Behavioural pharmacology.

[83]  J. Schiemann,et al.  Dopamine midbrain neurons in health and Parkinson’s disease: Emerging roles of voltage-gated calcium channels and ATP-sensitive potassium channels , 2015, Neuroscience.

[84]  Alice M Stamatakis,et al.  Considerations When Using Cre-Driver Rodent Lines for Studying Ventral Tegmental Area Circuitry , 2015, Neuron.

[85]  Liqun Luo,et al.  Diversity of Transgenic Mouse Models for Selective Targeting of Midbrain Dopamine Neurons , 2015, Neuron.

[86]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[87]  Trevor Darrell,et al.  Fully Convolutional Networks for Semantic Segmentation , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[88]  P. Greengard,et al.  Molecular determinants of selective dopaminergic vulnerability in Parkinson’s disease: an update , 2014, Front. Neuroanat..

[89]  B. Fakler,et al.  Mutant α-Synuclein Enhances Firing Frequencies in Dopamine Substantia Nigra Neurons by Oxidative Impairment of A-Type Potassium Channels , 2014, The Journal of Neuroscience.

[90]  Jan Gründemann,et al.  Orchestrated increase of dopamine and PARK mRNAs but not miR-133b in dopamine neurons in Parkinson's disease , 2014, Neurobiology of Aging.

[91]  Luc Van Gool,et al.  The Pascal Visual Object Classes Challenge: A Retrospective , 2014, International Journal of Computer Vision.

[92]  Christoph Sommer,et al.  Machine learning in cell biology – teaching computers to recognize phenotypes , 2013, Journal of Cell Science.

[93]  Orli G. Bahcall Polygenic architecture , 2013, Nature Genetics.

[94]  J. Foster,et al.  Mechanisms of dopamine transporter regulation in normal and disease states. , 2013, Trends in pharmacological sciences.

[95]  J. Roeper Dissecting the diversity of midbrain dopamine neurons , 2013, Trends in Neurosciences.

[96]  M. Morales,et al.  Heterogeneous composition of dopamine neurons of the rat A10 region: molecular evidence for diverse signaling properties , 2013, Brain Structure and Function.

[97]  Sahar Ahmad,et al.  A novel use of combined tyrosine hydroxylase and silver nucleolar staining to determine the effects of a unilateral intrastriatal 6-hydroxydopamine lesion in the substantia nigra: A stereological study , 2012, Journal of Neuroscience Methods.

[98]  B. Mellström,et al.  Ca2+-dependent Transcriptional Control of Ca2+ Homeostasis* , 2012, The Journal of Biological Chemistry.

[99]  K. Jellinger Neuropathology of sporadic Parkinson's disease: Evaluation and changes of concepts , 2012, Movement disorders : official journal of the Movement Disorder Society.

[100]  K. Double,et al.  Substantia Nigra, Ventral Tegmental Area, and Retrorubral Fields , 2012 .

[101]  K. Double Neuronal vulnerability in Parkinson's disease. , 2012, Parkinsonism & related disorders.

[102]  J. Flanagan,et al.  RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. , 2012, The Journal of molecular diagnostics : JMD.

[103]  G. Paxinos,et al.  A cytoarchitectonic and chemoarchitectonic analysis of the dopamine cell groups in the substantia nigra, ventral tegmental area, and retrorubral field in the mouse , 2012, Brain Structure and Function.

[104]  C. Fornal,et al.  The Appropriateness of Unbiased Optical Fractionators to Assess Cell Proliferation in the Adult Hippocampus , 2011, Front. Neurosci..

[105]  S. Daubner,et al.  Tyrosine hydroxylase and regulation of dopamine synthesis. , 2011, Archives of biochemistry and biophysics.

[106]  Finbarr O'Sullivan,et al.  Immunohistochemical and immunofluorescence procedures for protein analysis. , 2011, Methods in molecular biology.

[107]  T. González-Hernández,et al.  Vulnerability of Mesostriatal Dopaminergic Neurons in Parkinson's Disease , 2010, Front. Neuroanat..

[108]  Geoffrey E. Hinton,et al.  Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.

[109]  S. Haber,et al.  Increased synaptic dopamine function in associative regions of the striatum in schizophrenia. , 2010, Archives of general psychiatry.

[110]  O. Hikosaka,et al.  Two types of dopamine neuron distinctly convey positive and negative motivational signals , 2009, Nature.

[111]  P. Tobler,et al.  Functional imaging of the human dopaminergic midbrain , 2009, Trends in Neurosciences.

[112]  S. Lammel,et al.  Unique Properties of Mesoprefrontal Neurons within a Dual Mesocorticolimbic Dopamine System , 2008, Neuron.

[113]  Charles R. Gerfen,et al.  Targeting Cre Recombinase to Specific Neuron Populations with Bacterial Artificial Chromosome Constructs , 2007, The Journal of Neuroscience.

[114]  A. Björklund,et al.  Dopamine neuron systems in the brain: an update , 2007, Trends in Neurosciences.

[115]  A. Pühler,et al.  Molecular systems biology , 2007 .

[116]  Anne E Carpenter,et al.  CellProfiler: image analysis software for identifying and quantifying cell phenotypes , 2006, Genome Biology.

[117]  Houeto Jean-Luc [Parkinson's disease]. , 2022, La Revue du praticien.

[118]  G. Halliday,et al.  Localization of immunoreactivity for Deleted in Colorectal Cancer (DCC), the receptor for the guidance factor netrin-1, in ventral tier dopamine projection pathways in adult rodents , 2005, Neuroscience.

[119]  Jochen Roeper,et al.  K-ATP channels promote the differential degeneration of dopaminergic midbrain neurons , 2005, Nature Neuroscience.

[120]  Cordelia Schmid,et al.  The 2005 PASCAL Visual Object Classes Challenge , 2005, MLCW.

[121]  Vladimir V. Frolkis,et al.  Neurobiology of Aging , 2019, Psychobiology of Behaviour.

[122]  R. Wise Dopamine, learning and motivation , 2004, Nature Reviews Neuroscience.

[123]  D. Koziorowski,et al.  Mössbauer spectroscopy and ELISA studies reveal differences between Parkinson's disease and control substantia nigra. , 2004, Biochimica et biophysica acta.

[124]  L. Alberi,et al.  Midbrain Dopaminergic Neurons , 2003 .

[125]  R. Gainetdinov,et al.  Plasma membrane monoamine transporters: structure, regulation and function , 2003, Nature Reviews Neuroscience.

[126]  Jochen Roeper,et al.  Ih Channels Contribute to the Different Functional Properties of Identified Dopaminergic Subpopulations in the Midbrain , 2002, The Journal of Neuroscience.

[127]  B. Liss,et al.  Tuning pacemaker frequency of individual dopaminergic neurons by Kv4.3L and KChip3.1 transcription , 2001, The EMBO journal.

[128]  A. Baddeley Is stereology ‘unbiased’? , 2001, Trends in Neurosciences.

[129]  J. Obeso,et al.  Dopamine Cell Degeneration Induced by Intraventricular Administration of 6-Hydroxydopamine in the Rat: Similarities with Cell Loss in Parkinson's Disease , 2001, Experimental Neurology.

[130]  S. Agatonovic-Kustrin,et al.  Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. , 2000, Journal of pharmaceutical and biomedical analysis.

[131]  A. Graybiel,et al.  The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson's disease. , 1999, Brain : a journal of neurology.

[132]  A. Graybiel,et al.  The substantia nigra of the human brain. I. Nigrosomes and the nigral matrix, a compartmental organization based on calbindin D(28K) immunohistochemistry. , 1999, Brain : a journal of neurology.

[133]  Mark J. West,et al.  Stereological methods for estimating the total number of neurons and synapses: issues of precision and bias , 1999, Trends in Neurosciences.

[134]  B. Rudy,et al.  Differential expression of Kv4 K+ channel subunits mediating subthreshold transient K+ (A-type) currents in rat brain. , 1998, Journal of neurophysiology.

[135]  George Paxinos,et al.  The Mouse Brain in Stereotaxic Coordinates , 2001 .

[136]  S. Haber,et al.  The primate substantia nigra and VTA: integrative circuitry and function. , 1997, Critical reviews in neurobiology.

[137]  D. German,et al.  Midbrain dopaminergic neurons in the mouse: co-localization with Calbindin-D28k and calretinin , 1996, Neuroscience.

[138]  D. German,et al.  Midbrain dopaminergic neurons in the mouse: Computer‐assisted mapping , 1996, The Journal of comparative neurology.

[139]  Robert B. Fisher,et al.  Hypermedia image processing reference , 1996 .

[140]  S. Hersch,et al.  The dopamine transporter: immunochemical characterization and localization in brain , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[141]  Y. Hurd,et al.  The dopamine transporter and dopamine D2 receptor messenger RNAs are differentially expressed in limbic- and motor-related subpopulations of human mesencephalic neurons , 1994, Neuroscience.

[142]  D. Mash,et al.  Dopamine transporter messenger RNA in Parkinson's disease and control substantia nigra neurons , 1994, Annals of neurology.

[143]  Y. Agid,et al.  Differential expression of tyrosine hydroxylase and membrane dopamine transporter genes in subpopulations of dopaminergic neurons of the rat mesencephalon. , 1994, Brain research. Molecular brain research.

[144]  J. Friedman Parkinson's disease update. , 1989, Rhode Island medicine.

[145]  B. A. Brooks,et al.  Midbrain Dopaminergic Cell Loss in Parkinson's Disease and MPTP‐Induced Parkinsonism: Sparing of Calbindin‐D25k—Containing Cells a , 1992, Annals of the New York Academy of Sciences.

[146]  P. Mcgeer,et al.  Relative sparing in Parkinson's disease of substantia nigra dopamine neurons containing calbindin-D28K , 1990, Brain Research.

[147]  Wade K. Smith,et al.  Midbrain dopaminergic cell loss in parkinson's disease: Computer visualization , 1989, Annals of neurology.

[148]  C. Gerfen,et al.  The neostriatal mosaic: compartmental distribution of calcium-binding protein and parvalbumin in the basal ganglia of the rat and monkey. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[149]  HighWire Press The journal of neuroscience : the official journal of the Society for Neuroscience. , 1981 .

[150]  R. E. Miles,et al.  Precise and general conditions for the validity of a comprehensive set of stereological fundamental formulae , 1976 .

[151]  R. Dobarzić,et al.  [Fluorescence microscopy]. , 1975, Plucne bolesti i tuberkuloza.

[152]  C. E. Rogers,et al.  Symbolic Description of Factorial Models for Analysis of Variance , 1973 .

[153]  Frontiers in Aging Neuroscience , 2022 .