High Frequency Data, Frequency Domain Inference and Volatility Forecasting

While it is clear that the volatility of asset returns is serially correlated, there is no general agreement as to the most appropriate parametric model for characterizing this temporal dependence. In this paper, we propose a simple way of modeling financial market volatility using high frequency data. The method avoids using a tight parametric model, by instead simply fitting a long autoregression to log-squared, squared or absolute high frequency returns. This can either be estimated by the usual time domain method, or alternatively the autoregressive coefficients can be backed out from the smoothed periodogram estimate of the spectrum of log-squared, squared or absolute returns. We show how this approach can be used to construct volatility forecasts, which compare favorably with some leading alternatives in an out-of-sample forecasting exercise.

[1]  M. Dacorogna,et al.  Statistical study of foreign exchange rates, empirical evidence of a price change scaling law, and intraday analysis , 1990 .

[2]  F. Breidt,et al.  The detection and estimation of long memory in stochastic volatility , 1998 .

[3]  F. Diebold,et al.  Comparing Predictive Accuracy , 1994, Business Cycles.

[4]  Chris Chatfield,et al.  Introduction to Statistical Time Series. , 1976 .

[5]  P. Robinson,et al.  Testing for strong serial correlation and dynamic conditional heteroskedasticity in multiple regression , 1991 .

[6]  F. Diebold,et al.  The Distribution of Realized Exchange Rate Volatility , 2000 .

[7]  T. Bollerslev,et al.  Intraday periodicity and volatility persistence in financial markets , 1997 .

[8]  B. Mandelbrot The Variation of Certain Speculative Prices , 1963 .

[9]  Improved Quasi-Maximum Likelihood for Stochastic Volatility Models , 1996 .

[10]  R. Baillie,et al.  Fractionally integrated generalized autoregressive conditional heteroskedasticity , 1996 .

[11]  Daniel B. Nelson,et al.  Inequality Constraints in the Univariate GARCH Model , 1992 .

[12]  David I. Harvey The evaluation of economic forecasts , 1997 .

[13]  R. J. Bhansali,et al.  Wiener filtering (with emphasis on frequency-domain approaches) , 1983 .

[14]  Peter E. Rossi,et al.  Nonlinear dynamic structures , 1993 .

[15]  K. Berk Consistent Autoregressive Spectral Estimates , 1974 .

[16]  T. Bollerslev,et al.  Forecasting financial market volatility: Sample frequency vis-a-vis forecast horizon , 1999 .

[17]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[18]  F. Diebold,et al.  Modeling Volatility Dynamics , 1995 .

[19]  Tim Bollerslev,et al.  Chapter 49 Arch models , 1994 .

[20]  F. Eugene FAMA, . The Behavior of Stock-Market Prices, Journal of Business, , . , 1965 .

[21]  D. Brillinger Time series - data analysis and theory , 1981, Classics in applied mathematics.

[22]  Adrian Pagan,et al.  Alternative Models for Conditional Stock Volatility , 1989 .

[23]  Frequency domain inference for univariate impulse responses , 1999 .

[24]  George Tauchen,et al.  Using Daily Range Data to Calibrate Volatility Diffusions and Extract the Forward Integrated Variance , 1999 .

[25]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[26]  R. Engle,et al.  A Permanent and Transitory Component Model of Stock Return Volatility , 1993 .

[27]  R. J. Bhansali,et al.  A Monte Carlo Comparison of the Regression Method and the Spectral Methods of Prediction , 1973 .

[28]  Peter E. Rossi,et al.  Stock Prices and Volume , 1992 .

[29]  T. Andersen Stochastic Autoregressive Volatility: A Framework for Volatility Modeling , 1994 .

[30]  R. Chou,et al.  ARCH modeling in finance: A review of the theory and empirical evidence , 1992 .

[31]  E. Fama The Behavior of Stock-Market Prices , 1965 .

[32]  M. Dacorogna,et al.  A geographical model for the daily and weekly seasonal volatility in the foreign exchange market , 1993 .

[33]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[34]  N. Shephard,et al.  Multivariate stochastic variance models , 1994 .

[35]  R. Bhansali Asymptotic Properties of the Wiener‐Kolmogorov Predictor. I , 1974 .

[36]  Daniel B. Nelson CONDITIONAL HETEROSKEDASTICITY IN ASSET RETURNS: A NEW APPROACH , 1991 .

[37]  Philippe Jorion Predicting Volatility in the Foreign Exchange Market , 1995 .

[38]  T. Bollerslev,et al.  ANSWERING THE SKEPTICS: YES, STANDARD VOLATILITY MODELS DO PROVIDE ACCURATE FORECASTS* , 1998 .