Arbitrated quantum signature scheme based on cluster states

Cluster states can be exploited for some tasks such as topological one-way computation, quantum error correction, teleportation and dense coding. In this paper, we investigate and propose an arbitrated quantum signature scheme with cluster states. The cluster states are used for quantum key distribution and quantum signature. The proposed scheme can achieve an efficiency of 100 %. Finally, we also discuss its security against various attacks.

[1]  W. Stinespring Positive functions on *-algebras , 1955 .

[2]  W Dür,et al.  Stability of macroscopic entanglement under decoherence. , 2004, Physical review letters.

[3]  Chao Wang,et al.  Quantum homomorphic signature , 2015, Quantum Inf. Process..

[4]  Olivier Markowitch,et al.  A NOTE ON AN ARBITRATED QUANTUM SIGNATURE SCHEME , 2009 .

[5]  Qiao-Yan Wen,et al.  Quantum threshold group signature , 2008 .

[6]  Robert Raussendorf,et al.  Fault-tolerant quantum computation with high threshold in two dimensions. , 2007, Physical review letters.

[7]  Zhiwei Sun,et al.  Quantum Private Comparison Protocol Based on Cluster States , 2013 .

[8]  Dongyang Long,et al.  ENTANGLEMENT ENHANCES THE SECURITY OF ARBITRATED QUANTUM SIGNATURE , 2009 .

[9]  Xunru Yin,et al.  A Blind Quantum Signature Scheme with χ-type Entangled States , 2012 .

[10]  Tzonelih Hwang,et al.  On “Arbitrated quantum signature of classical messages against collective amplitude damping noise” , 2011 .

[11]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[12]  Wen Qiao-Yan,et al.  Cryptanalysis of the arbitrated quantum signature protocols , 2011 .

[13]  Dirk Schlingemann,et al.  Quantum error-correcting codes associated with graphs , 2000, ArXiv.

[14]  Debbie W. Leung,et al.  Quantum vernam cipher , 2000, Quantum Inf. Comput..

[15]  Franco Nori,et al.  Efficient one-step generation of large cluster states with solid-state circuits , 2007 .

[16]  Jian-Wei Pan,et al.  Experimental entanglement of six photons in graph states , 2006, quant-ph/0609130.

[17]  Tian-Yin Wang,et al.  One-time proxy signature based on quantum cryptography , 2012, Quantum Inf. Process..

[18]  Yuan Tian,et al.  A weak blind signature scheme based on quantum cryptography , 2009 .

[19]  Zhigang Chen,et al.  A Weak Quantum Blind Signature with Entanglement Permutation , 2015 .

[20]  N. Lutkenhaus,et al.  Comment on ``Arbitrated quantum-signature scheme'' , 2008, 0806.0854.

[21]  Guihua Zeng Reply to “Comment on ‘Arbitrated quantum-signature scheme’ ” , 2008 .

[22]  Guihua Zeng,et al.  Arbitrated quantum-signature scheme , 2001, quant-ph/0109007.

[23]  Pankaj Agrawal,et al.  Task-oriented maximally entangled states , 2007, 0707.4295.

[24]  Qin Li,et al.  Efficient arbitrated quantum signature and its proof of security , 2013, Quantum Inf. Process..

[25]  P. Panigrahi,et al.  Quantum-information splitting using multipartite cluster states , 2008, 0802.0781.

[26]  Wang Tian-yin,et al.  Fair quantum blind signatures , 2010 .

[27]  Qiao-Yan Wen,et al.  Quantum secure direct communication with cluster states , 2010 .

[28]  Su-Juan Qin,et al.  An arbitrated quantum signature scheme with fast signing and verifying , 2014, Quantum Inf. Process..

[29]  Qin Li,et al.  Arbitrated quantum signature scheme using Bell states , 2009 .

[30]  W. Dur,et al.  Entanglement properties of multipartite entangled states under the influence of decoherence , 2005 .

[31]  Daowen Qiu,et al.  Security analysis and improvements of arbitrated quantum signature schemes , 2010 .

[32]  H. Briegel,et al.  Persistent entanglement in arrays of interacting particles. , 2000, Physical review letters.

[33]  Dowon Hong,et al.  Security problem on arbitrated quantum signature schemes , 2011 .

[34]  Yuan Tian,et al.  A group signature scheme based on quantum teleportation , 2010 .

[35]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[36]  Liusheng Huang,et al.  Quantum group blind signature scheme without entanglement , 2011 .

[37]  Weizhong Zhao,et al.  On the security of arbitrated quantum signature schemes , 2012, 1205.3265.

[38]  W. Mathis,et al.  Schemes for generating the cluster states in microwave cavity QED (6 pages) , 2005 .

[39]  Yang Yu-Guang Multi-proxy quantum group signature scheme with threshold shared verification , 2008 .

[40]  Tzonelih Hwang,et al.  Comment on “Security analysis and improvements of arbitrated quantum signature schemes” , 2011, 1105.1232.

[41]  Su-Juan Qin,et al.  Dynamic quantum secret sharing , 2012 .

[42]  Ying Guo,et al.  Batch proxy quantum blind signature scheme , 2011, Science China Information Sciences.

[43]  Pankaj Agrawal,et al.  Teleportation and Superdense Coding with Genuine Quadripartite Entangled States , 2008 .

[44]  Yu-Guang Yang,et al.  Erratum: Arbitrated quantum signature of classical messages against collective amplitude damping noise (Opt. Commun. 283 (2010) 3198–3201) , 2010 .

[45]  S. Qin,et al.  Arbitrated quantum signature scheme based on χ-type entangled states , 2013 .