Spectral optimization problems
暂无分享,去创建一个
[1] Dorin Bucur,et al. N-Dimensional Shape Optimization under Capacitary Constraint , 1995 .
[2] F. Brock. Continuous Steiner‐Symmetrization , 1995 .
[3] W. Ziemer. Weakly differentiable functions , 1989 .
[4] G. Szegő,et al. Inequalities for Certain Eigenvalues of a Membrane of Given Area , 1954 .
[5] Dorin Bucur,et al. An alternative approach to the Faber–Krahn inequality for Robin problems , 2009 .
[6] Tanguy Briançon. Regularity of optimal shapes for the Dirichlet's energy with volume constraint , 2004 .
[7] V. Komkov. Optimal shape design for elliptic systems , 1986 .
[8] George Polya,et al. On the characteristic frequencies of a symmetric membrane , 1955 .
[9] M. Kohler-Jobin. Une méthode de comparaison isopérimétrique de fonctionnelles de domaines de la physique mathématique II. Seconde partie: cas inhomogène: une inégalité isopérimétrique entre la fréquence fondamentale d'une membrane et l'énergie d'équilibre d'un problème de Poisson , 1978 .
[10] G. Buttazzo,et al. Shape optimization for Dirichlet problems: Relaxed solutions and optimality conditions , 1990 .
[11] G. D. Maso,et al. An Introduction to-convergence , 1993 .
[12] D. Bucur,et al. Shape optimisation problems governed by nonlinear state equations , 1998, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[13] G. Buttazzo,et al. On the characterization of the compact embedding of Sobolev spaces , 2009 .
[14] L. A. Cafferelli,et al. An Optimal Partition Problem for Eigenvalues , 2007, J. Sci. Comput..
[15] Marie-Hélène Bossel. Membranes élastiquement liées: extension du théorème de Rayleigh-Faber-Krahn et de l'inégalité de Cheeger , 1986 .
[16] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[17] R. Benguria,et al. A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions , 1992 .
[18] Michel Pierre,et al. Lipschitz continuity of state functions in some optimal shaping , 2005 .
[19] F. Almgren. Review: Enrico Giusti, Minimal surfaces and functions of bounded variation , 1987 .
[20] E. Giusti. Minimal surfaces and functions of bounded variation , 1977 .
[21] D. Bucur,et al. A Variational Approach to the Isoperimetric Inequality for the Robin Eigenvalue Problem , 2010 .
[22] José M. Arrieta,et al. Neumann Eigenvalue Problems on Exterior Perturbations of the Domain , 1995 .
[23] H. Attouch. Variational convergence for functions and operators , 1984 .
[24] Giuseppe Buttazzo,et al. An existence result for a class of shape optimization problems , 1993 .
[25] Isabel N. Figueiredo,et al. On the attainable eigenvalues of the Laplace operator , 1999 .
[26] P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .
[27] Qatu,et al. Shape Optimization by the Homogenization Method. Applied Mathematical Sciences, Vol 146 , 2003 .
[28] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[29] Daniel Daners,et al. A Faber-Krahn inequality for Robin problems in any space dimension , 2006 .
[30] Dorin Bucur,et al. Variational Methods in Shape Optimization Problems , 2005, Progress in Nonlinear Differential Equations and Their Applications.
[31] Giuseppe Buttazzo,et al. Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization (Mps-Siam Series on Optimization 6) , 2005 .
[32] On the motion of rigid bodies in a viscous incompressible fluid , 2003 .
[33] J. Keller,et al. Range of the first two eigenvalues of the laplacian , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[34] Antoine Henrot,et al. Le stade ne minimise pas λ2 parmi les ouverts convexes du plan , 2001 .
[35] Gianni Dal Maso. $\Gamma $-convergence and $\mu $-capacities , 1987 .
[36] Edouard Oudet,et al. Minimizing the Second Eigenvalue of the Laplace Operator with Dirichlet Boundary Conditions , 2003 .
[37] G. Buttazzo,et al. On some rescaled shape optimization problems , 2009, 0911.4561.
[38] Gianni Dal Maso,et al. Asymptotic behaviour and correctors for Dirichlet problems in perforated domains with homogeneous monotone operators , 1997 .
[39] L. Ambrosio,et al. Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .
[40] L. Ambrosio,et al. Functions of Bounded Variation and Free Discontinuity Problems , 2000 .
[41] Dorin Bucur,et al. Shape optimization problems for eigenvalues of elliptic operators , 2006 .
[42] Dorin Bucur,et al. Minimization of the third eigenvalue of the Dirichlet Laplacian , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[43] Marie-Hélène Bossel. Membranes élastiquement liées inhomogènes ou sur une surface: Une nouvelle extension du théorème isopérimétrique de Rayleigh-Faber-Krahn , 1988 .
[44] Mark S. Ashbaugh,et al. Open Problems on Eigenvalues of the Laplacian , 1999 .
[45] Edouard Oudet,et al. Numerical minimization of eigenmodes of a membrane with respect to the domain , 2004 .
[46] Dorin Bucur,et al. Optimal Partitions for Eigenvalues , 2009, SIAM J. Sci. Comput..
[47] A. Chambolle,et al. Uniqueness of the Cheeger set of a convex body , 2007, Pacific Journal of Mathematics.
[48] G. Pólya,et al. ON THE RATIO OF CONSECUTIVE EIGENVALUES , 1956 .
[49] Giuseppe Buttazzo,et al. Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations , 1989 .
[50] L. Caffarelli,et al. An area‐Dirichlet integral minimization problem , 2001 .
[51] G. Buttazzo,et al. Minimization of $\lambda_2(\Omega)$ with a perimeter constraint , 2009, 0904.2193.
[52] Susanna Terracini,et al. An optimal partition problem related to nonlinear eigenvalues , 2003 .
[53] A. Henrot. Minimization problems for eigenvalues of the Laplacian , 2003 .
[54] Andrea Braides. Γ-convergence for beginners , 2002 .
[55] Antoine Henrot,et al. Variation et optimisation de formes : une analyse géométrique , 2005 .
[56] G. Buttazzo,et al. An optimal design problem with perimeter penalization , 1993 .
[57] V. Sverák,et al. On optimal shape design , 1992 .
[58] E. Krahn,et al. Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises , 1925 .
[59] Lucia De Luca,et al. Metodi diretti nel Calcolo delle Variazioni , 2010 .
[60] Par Marie-Hélèe Bossel. Elastically supported membranes inhomogeneous or on a surface: a new extension of the isoperimetric Rayleigh-Faber-Krahn , 1988 .
[61] Antoine Henrot,et al. Variation et optimisation de formes , 2005 .
[62] J. Zolésio,et al. Introduction to shape optimization : shape sensitivity analysis , 1992 .
[63] Elliptical membranes with smallest second eigenvalue , 1973 .
[64] Marie-Thérèse Kohler-Jobin. Une méthode de comparaison isopérimétrique de fonctionnelles de domaines de la physique mathématique I. Première partie: une démonstration de la conjecture isopérimétrique Pλ2 ≥ πj04/2 de Pólya et Szegö , 1978 .
[65] I. Ekeland,et al. Convex analysis and variational problems , 1976 .
[67] Antoine Henrot,et al. Extremum Problems for Eigenvalues of Elliptic Operators , 2006 .
[68] P. Garabedian,et al. Variational Problems in the Theory of Elliptic Partial Differential Equations , 1953 .
[69] J. Heinonen,et al. Nonlinear Potential Theory of Degenerate Elliptic Equations , 1993 .
[70] B. Dacorogna. Direct methods in the calculus of variations , 1989 .
[71] L. Hedberg,et al. Function Spaces and Potential Theory , 1995 .
[72] Giuseppe Buttazzo,et al. Shape optimization for Dirichlet problems: Relaxed formulation and optimality conditions , 1991 .
[73] H. Weinberger,et al. An optimal Poincaré inequality for convex domains , 1960 .
[74] Hans F. Weinberger,et al. An Isoperimetric Inequality for the N-Dimensional Free Membrane Problem , 1956 .
[75] M. Brelot. Classical potential theory and its probabilistic counterpart , 1986 .
[76] Marie-Thérèse Kohler-Jobin. Méthode de comparaison isopérimétrique de fonctionnelles de domaines de la physique mathématique , 1977 .
[77] M. Bendsøe,et al. Topology Optimization: "Theory, Methods, And Applications" , 2011 .
[78] Gianni Dal Maso,et al. Wiener's criterion and Γ-convergence , 1987 .
[79] B. Fuglede. Finely Harmonic Functions , 1972 .
[80] Steven J. Cox,et al. Where Best to Hold a Drum Fast , 2003, SIAM Rev..
[81] Ronald F. Gariepy. FUNCTIONS OF BOUNDED VARIATION AND FREE DISCONTINUITY PROBLEMS (Oxford Mathematical Monographs) , 2001 .
[82] G. Allaire,et al. Shape optimization by the homogenization method , 1997 .
[83] Jimmy Lamboley,et al. Regularity of the optimal shape for the first eigenvalue of the laplacian with volume and inclusion constraints , 2008, 0807.2196.
[84] G. Buttazzo,et al. Shape flows for spectral optimization problems , 2011, 1109.5243.
[85] G. Buttazzo,et al. Quasistatic Evolution in Debonding Problems via Capacitary Methods , 2008 .
[86] Jan Sokolowski,et al. Introduction to shape optimization , 1992 .
[87] F. Brock. Continuous rearrangement and symmetry of solutions of elliptic problems , 2000 .