Photoluminescence of CdTe doped with arsenic and antimony acceptors

A detailed characterization of the impurity centers involved in the photoluminescence (PL) of p‐type CdTe doped with arsenic (As) and antimony (Sb) has been performed. The PL spectrum has been measured from 1.35 eV up to the band edge and as a function of temperature (4.2 up to 30 K). In addition to the familiar broad PL line centered at 1.45 eV and present in undoped and doped materials, the doped samples exhibit a new band near 1.54 eV showing a fine structure composed of two peaks whose intensities vary with temperature. The observed longitudinal optical (LO) phonon replicas associated with the zero‐phonon lines, at 1.45 eV and 1.54 eV, respectively, are characterized by a Huang‐Rhys factor S=1.3±0.1 and S=0.30±0.02. The various electron‐hole recombination processes are explained by means of a simple analytic model correlating the position of the zero‐phonon lines to the relative intensities of the phonon side bands. The model accounts for the chemical shift of the defect centers and describes the effe...

[1]  R. L. Harper,et al.  Arsenic-doped CdTe epilayers grown by photoassisted molecular beam epitaxy , 1989 .

[2]  Toshinosuke Mutô Theory of the F-centers of Coloured Alkali Halide Crystals. Part I , 1949 .

[3]  J. Pautrat,et al.  Shallow Acceptors in Cadmium Telluride , 1982 .

[4]  N. Giles,et al.  Low-temperature photoluminescence study of doped CdTe films grown by photoassisted molecular-beam epitaxy , 1987 .

[5]  J. Ballingall,et al.  Photoluminescence in CdTe grown on GaAs substrates by molecular beam epitaxy , 1986 .

[6]  E. Molva,et al.  Magneto-optical studies of excitons bound to Ag and Cu acceptors inp-type CdTe , 1983 .

[7]  E. Kartheuser,et al.  Electron–Hole Correlation Effects on Donor–Acceptor Pairs , 1982 .

[8]  J. Hopfield A theory of edge-emission phenomena in CdS, ZnS and ZnO , 1959 .

[9]  A. Messiah Quantum Mechanics , 1961 .

[10]  Saminadayar,et al.  Shallow donors in CdTe. , 1990, Physical review. B, Condensed matter.

[11]  S. Suga,et al.  Excitation spectra of exciton luminescence in CdTe , 1975 .

[12]  S. Ghandhi,et al.  Arsenic‐doped p‐CdTe layers grown by organometallic vapor phase epitaxy , 1987 .

[13]  E. Molva,et al.  Photoluminescence studies in N, P, As implanted cadmium telluride , 1983 .

[14]  E. Molva,et al.  Acceptor states in CdTe and comparison with ZnTe. General trends , 1984 .

[15]  C. Fontaine,et al.  Luminescence characterization of residual impurities in CdTe grown by molecular beam epitaxy , 1985 .

[16]  F. Williams,et al.  Radiative recombination of donor-acceptor pairs in polar semiconductors , 1980 .

[17]  R. Triboulet,et al.  Optical properties of a donor-cadmium vacancy complex in CdTe , 1974 .

[18]  T. Taguchi,et al.  A new 1.47 eV defect-luminescence band in MOCVD-grown CdTe on (100) GaAs , 1990 .

[19]  M. Kawashima,et al.  Annealing behavior of bound exciton lines in high quality CdTe , 1988 .

[20]  Meyer,et al.  Electronic properties of A centers in CdTe: A comparison with experiment. , 1993, Physical review. B, Condensed matter.

[21]  Jaesun Lee,et al.  Photoluminescence of n‐type CdTe:I grown by molecular beam epitaxy , 1993 .

[22]  J. Schmit,et al.  Theory of extrinsic oscillatory photoconductivity in polar semiconductors , 1988 .

[23]  D. G. Thomas,et al.  Pair Spectra in GaP , 1963 .

[24]  E. Molva,et al.  Identification of Cu and Ag acceptors in CdTe , 1982 .

[25]  C. Barnes,et al.  Cathodoluminescence studies of the 1.4 eV bands in CdTe , 1977 .

[26]  M. Lorenz,et al.  Band edge emission properties of CdTe , 1961 .

[27]  Le Si Dang,et al.  Optical detection of cyclotron resonance of electron and holes in CdTe , 1982 .

[28]  J. Merz,et al.  Luminescence investigation of copper diffusion into cadmium telluride , 1986 .

[29]  J. Bernholc,et al.  Theory of binding energies of acceptors in semiconductors , 1977 .

[30]  C. E. Barnes,et al.  Photoluminescence in high‐resistivity CdTe : In , 1975 .

[31]  H. Fröhlich,et al.  XX. Properties of slow electrons in polar materials , 1950 .

[32]  R. Triboulet,et al.  Localized defects in p-CdTe:Cu doped by copper incorporation during Bridgman growth , 1988 .

[33]  B. Lax,et al.  Verification of polaron cyclotron-resonance theory and determination of the coupling constant in n-CdTe , 1976 .

[34]  D. E. Cooper,et al.  p‐type arsenic doping of CdTe and HgTe/CdTe superlattices grown by photoassisted and conventional molecular‐beam epitaxy , 1990 .

[35]  P. J. Dean,et al.  Novel type of optical transition observed in MBE grown CdTe , 1984 .

[36]  Meyer,et al.  Identification of the chlorine A center in CdTe. , 1992, Physical review. B, Condensed matter.

[37]  M. Kawashima,et al.  Correlation between electrical and photoluminescence measurements in high‐quality p‐type CdTe , 1988 .

[38]  Kun Huang,et al.  Theory of light absorption and non-radiative transitions in F-centres , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[39]  E. Kartheuser,et al.  Zero-phonon recombination spectra of donor-acceptor pairs in GaP and ZnSe: Model-impurity-potential approach , 1982 .

[40]  M. Ekawa,et al.  Mechanism of arsenic incorporation and electrical properties in CdTe layers grown by metalorganic vapor phase epitaxy , 1992 .

[41]  W. Ossau,et al.  Linear polarized luminescence from CdTe epilayers , 1989 .

[42]  T. J. Coutts,et al.  Current topics in photovoltaics , 1985 .

[43]  R. Bindemann,et al.  On the Spectral Intensity Distribution of Donor–Acceptor Pair Recombination in GaP , 1974 .