Parameter identification of degrading and pinched hysteretic systems using a modified Bouc–Wen model

Abstract The Bouc–Wen (BW) model is a successful differential equations model used to describe a wide range of nonlinear hysteretic systems. However, it is unable to describe force degradation, stiffness degradation and pinching effects. Therefore, Baber and Noori proposed a generalisation, developing the Bouc–Wen–Baber–Noori (BWBN) model. Nevertheless, it is composed of many parameters and complex pinching and degrading functions. Thus, it is necessary to develop a simpler and reliable model to be used for practical applications. In this paper, a modified BW model is proposed. It involves a more direct physical meaning of each parameter and allows achieving a substantial reduction of computational effort and numerical deficiencies. This is obtained through simpler pinching and degrading functions that entail a decrease of the number of parameters. The result is a straightforward model, capable of predicting the behaviour of degrading and pinched hysteretic systems. An application of the proposed scheme to a real case is also presented, in which reinforced concrete bridge piers that were physically tested in the laboratory are considered. The force–displacement data are used to perform the identification process of the model parameters via a Genetic Algorithm. The numerical results are accurate since they coincide with the experimental ones.

[1]  Bing Li,et al.  Modified Bouc–Wen model for hysteresis behavior of RC beam–column joints with limited transverse reinforcement , 2013 .

[2]  Bruno Briseghella,et al.  Degrading bouc-wen model parameters identification under cyclic load , 2017 .

[3]  Giuseppe Quaranta,et al.  Multi-objective optimization by genetic algorithm of structural systems subject to random vibrations , 2009 .

[4]  Ian D. Aiken,et al.  AN ANALYTICAL HYSTERESIS MODEL FOR ELASTOMERIC SEISMIC ISOLATION BEARINGS , 1997 .

[5]  G. Marano,et al.  Genetic-Algorithm-Based Strategies for Dynamic Identification of Nonlinear Systems with Noise-Corrupted Response , 2010 .

[6]  Ali Manzoori,et al.  Application of an Extended Bouc-Wen Model in Seismic Response Prediction of Unbonded Fiber-Reinforced Isolators , 2017 .

[7]  Faris Albermani,et al.  Pinching hysteretic response of yielding shear panel device , 2011 .

[8]  Nopdanai Ajavakom,et al.  Performance of nonlinear degrading structures: Identification, validation, and prediction , 2008 .

[9]  Bruno Briseghella,et al.  Rapid Repair Technique to Improve Plastic Dissipation of Existing Chinese RC Bridges , 2016 .

[10]  Mohammed Ismail,et al.  The Hysteresis Bouc-Wen Model, a Survey , 2009 .

[11]  B Samali,et al.  Bouc-Wen model parameter identification for a MR fluid damper using computationally efficient GA. , 2007, ISA transactions.

[12]  Giuseppe Quaranta,et al.  Parametric Identification of Nonlinear Devices for Seismic Protection Using Soft Computing Techniques , 2013 .

[13]  Marco Domaneschi,et al.  Simulation of controlled hysteresis by the semi-active Bouc-Wen model , 2012 .

[14]  Giuseppe Quaranta,et al.  Genetic Algorithms in Mechanical Systems Identification: State-of-the-Art Review , 2009 .

[15]  A. E. Charalampakis,et al.  The response and dissipated energy of Bouc–Wen hysteretic model revisited , 2015 .

[16]  Ankush Mittal,et al.  Soft Computing Methods for Microwave and Millimeter-Wave Design Problems , 2012, Studies in Computational Intelligence.

[17]  Mikhail E. Semenov,et al.  Bouc-Wen model of hysteretic damping , 2017 .

[18]  Daniel Bedoya-Ruiz,et al.  Identification of Bouc-Wen type models using multi-objective optimization algorithms , 2013 .

[19]  Wei Zhu,et al.  Hysteresis modeling and displacement control of piezoelectric actuators with the frequency-dependent behavior using a generalized Bouc–Wen model , 2016 .

[20]  Gérard Dreyfus,et al.  How to be a gray box: dynamic semi-physical modeling , 2001, Neural Networks.

[21]  Davide Lavorato,et al.  Pseudo-dynamic tests on reinforced concrete bridges repaired and retrofitted after seismic damage , 2015 .

[22]  Giuseppe Quaranta,et al.  Parametric identification of seismic isolators using differential evolution and particle swarm optimization , 2014, Appl. Soft Comput..

[23]  S. T. Mau,et al.  Systems Identification of Degrading Hysteretic Restoring Forces , 1988 .

[24]  Giuseppe Marano,et al.  DAMAGE AND DUCTILITY DEMAND SPECTRA ASSESSMENT OF HYSTERETIC DEGRADING SYSTEMS SUBJECT TO STOCHASTIC SEISMIC LOADS , 2006 .

[25]  V. K. Koumousis,et al.  A Bouc–Wen model compatible with plasticity postulates , 2009 .

[26]  Davide Lavorato,et al.  Seismic response of repaired bridges by pseudodynamic tests , 2010 .

[27]  Giuseppe Quaranta,et al.  Fuzzy-based robust structural optimization , 2008 .

[28]  A. E. Charalampakis,et al.  A consistent degrading Bouc–Wen model , 2014 .

[29]  Giuseppe Marano,et al.  Optimum design of Tuned Mass Dampers by displacement and energy perspectives , 2013 .

[30]  C. K. Dimou,et al.  Identification of Bouc-Wen hysteretic systems using particle swarm optimization , 2010 .

[31]  Bruno Briseghella,et al.  A repair and retrofitting intervention to improve plastic dissipation and shear strength of Chinese RC bridges , 2015 .

[32]  Silvia Santini,et al.  Pseudo-dynamic tests on repaired and retrofitted bridge columns , 2008 .

[33]  Giuseppe Marano,et al.  Stochastic optimum design criterion of added viscous dampers for buildings seismic protection , 2007 .

[34]  Y. Wen Method for Random Vibration of Hysteretic Systems , 1976 .

[35]  Mohammad Noori,et al.  Random Vibration of Degrading, Pinching Systems , 1985 .

[36]  H. Zhang,et al.  Parameter Analysis of the Differential Model of Hysteresis , 2004 .

[37]  José Rodellar,et al.  Adaptive backstepping control of a class of hysteretic systems , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[38]  Tudor Sireteanu,et al.  A comparative study of the dynamic behavior of Ramberg–Osgood and Bouc–Wen hysteresis models with application to seismic protection devices , 2014 .

[39]  Gangrou Peng,et al.  Modelling and identifying the parameters of a magneto-rheological damper with a force-lag phenomenon , 2014 .

[40]  Armen Der Kiureghian,et al.  Generalized Bouc-Wen model for highly asymmetric hysteresis , 2006 .

[41]  Giuseppe Quaranta,et al.  Robust optimum criteria for tuned mass dampers in fuzzy environments , 2009, Appl. Soft Comput..

[42]  Fayal Ikhouane,et al.  Systems with Hysteresis , 2007 .

[43]  Silvia Santini,et al.  Experimental program for pseudodynamic tests on repaired and retrofitted bridge piers , 2008 .

[44]  V. K. Koumousis,et al.  Identification of Bouc-Wen hysteretic systems by a hybrid evolutionary algorithm , 2008 .

[45]  Luigi Berardi,et al.  Predicting torsional strength of RC beams by using Evolutionary Polynomial Regression , 2012, Adv. Eng. Softw..

[46]  Michele Betti,et al.  Time history analysis of slender masonry towers: a simplified Bouc & Wen approach , 2015 .

[47]  Bruno Briseghella,et al.  Shaking table tests for the evaluation of the seismic performance of an innovative lightweight bridge with CFST composite truss girder and lattice pier , 2014 .

[48]  Tudor Sireteanu,et al.  Identification of an extended Bouc–Wen model with application to seismic protection through hysteretic devices , 2010 .