The variational multiscale method—a paradigm for computational mechanics

[1]  Thomas J. R. Hughes,et al.  The Stokes problem with various well-posed boundary conditions - Symmetric formulations that converge for all velocity/pressure spaces , 1987 .

[2]  T. Hughes,et al.  Space-time finite element methods for elastodynamics: formulations and error estimates , 1988 .

[3]  Jim Douglas,et al.  An absolutely stabilized finite element method for the stokes problem , 1989 .

[4]  Thomas J. R. Hughes,et al.  Space-time finite element methods for second-order hyperbolic equations , 1990 .

[5]  Franco Brezzi,et al.  Virtual bubbles and Galerkin-least-squares type methods (Ga.L.S.) , 1993 .

[6]  Alessandro Russo,et al.  CHOOSING BUBBLES FOR ADVECTION-DIFFUSION PROBLEMS , 1994 .

[7]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[8]  Thomas J. R. Hughes,et al.  A space-time formulation for multiscale phenomena , 1996 .

[9]  Alessandro Russo,et al.  Bubble stabilization of finite element methods for the linearized incompressible Navier-Stokes equations , 1996 .

[10]  Alessandro Russo,et al.  Deriving upwinding, mass lumping and selective reduced integration by residual-free bubbles , 1996 .

[11]  A POSTERIORI ERROR ESTIMATORS VIA BUBBLE FUNCTIONS , 1996 .

[12]  Alessandro Russo,et al.  Approximation of the Stokes problem by residual-free macro bubbles , 1996 .

[13]  Alessandro Russo,et al.  Unlocking with residual-free bubbles , 1997 .

[14]  Alessandro Russo,et al.  Mass lumping emanating from residual-free bubbles , 1997 .

[15]  Peter M. Pinsky,et al.  A multiscale finite element method for the Helmholtz equation , 1998 .

[16]  Kenneth E. Jansen,et al.  A better consistency for low-order stabilized finite element methods , 1999 .