Round complexity in the local transformations of quantum and classical states

In distributed quantum and classical information processing, spatially separated parties operate locally on their respective subsystems, but coordinate their actions through multiple exchanges of public communication. With interaction, the parties can perform more tasks. But how the exact number and order of exchanges enhances their operational capabilities is not well understood. Here we consider the minimum number of communication rounds needed to perform the locality-constrained tasks of entanglement transformation and its classical analog of secrecy manipulation. We provide an explicit construction of both quantum and classical state transformations which, for any given r, can be achieved using r rounds of classical communication exchanges, but no fewer. To show this, we build on the common structure underlying both resource theories of quantum entanglement and classical secret key. Our results reveal that highly complex communication protocols are indeed necessary to fully harness the information-theoretic resources contained in general quantum and classical states.Operational paradigms for distributed quantum and classical information processing involve multiple rounds of public communication. Here the authors consider the minimum number of communication rounds needed to perform the locality-constrained task of entanglement transformation.

[1]  Silvio Micali,et al.  The round complexity of secure protocols , 1990, STOC '90.

[2]  Laura Mančinska,et al.  Everything You Always Wanted to Know About LOCC (But Were Afraid to Ask) , 2012, 1210.4583.

[3]  M. Nielsen Conditions for a Class of Entanglement Transformations , 1998, quant-ph/9811053.

[4]  H. Lo,et al.  Concentrating entanglement by local actions: Beyond mean values , 1997, quant-ph/9707038.

[5]  Andrew Chi-Chih Yao,et al.  Quantum Circuit Complexity , 1993, FOCS.

[6]  Robert W. Spekkens,et al.  A classical analogue of negative information , 2005 .

[7]  Eric Chitambar,et al.  Local quantum transformations requiring infinite rounds of classical communication. , 2011, Physical review letters.

[8]  Charles H. Bennett,et al.  Exact and asymptotic measures of multipartite pure-state entanglement , 1999, Physical Review A.

[9]  Rudolf Ahlswede,et al.  Common randomness in information theory and cryptography - I: Secret sharing , 1993, IEEE Trans. Inf. Theory.

[11]  Nicolas Gisin,et al.  Linking Classical and Quantum Key Agreement: Is There a Classical Analog to Bound Entanglement? , 2002, Algorithmica.

[12]  Igor Devetak The private classical capacity and quantum capacity of a quantum channel , 2005, IEEE Transactions on Information Theory.

[13]  Zvi Galil,et al.  Lower bounds on communication complexity , 1984, STOC '84.

[14]  Noam Nisan,et al.  Rounds in Communication Complexity Revisited , 1993, SIAM J. Comput..

[15]  Jean-Marc Robert,et al.  How to reduce your enemy's information , 1986, CRYPTO 1986.

[16]  Karol Horodecki,et al.  Information Theories with Adversaries, Intrinsic Information, and Entanglement , 2005 .

[17]  Imre Csiszár,et al.  Information Theory - Coding Theorems for Discrete Memoryless Systems, Second Edition , 2011 .

[18]  Graeme Smith,et al.  Bound entangled states with a private key and their classical counterpart. , 2014, Physical review letters.

[19]  Ronald de Wolf,et al.  Quantum communication and complexity , 2002, Theor. Comput. Sci..

[20]  Min-Hsiu Hsieh,et al.  A Classical Analog to Entanglement Reversibility , 2015, Physical review letters.

[21]  Gilles Brassard,et al.  How to Reduce Your Enemy's Information (Extended Abstract) , 1985, CRYPTO.

[22]  Min-Hsiu Hsieh,et al.  Revisiting the optimal detection of quantum information , 2013, 1304.1555.

[23]  Renato Renner,et al.  New Bounds in Secret-Key Agreement: The Gap between Formation and Secrecy Extraction , 2003, EUROCRYPT.

[24]  S. Popescu,et al.  Classical analog of entanglement , 2001, quant-ph/0107082.

[25]  D. Leung,et al.  UvA-DARE ( Digital Academic Repository ) Round Elimination in Exact Communication Complexity , 2015 .

[26]  Hartmut Klauck,et al.  Interaction in Quantum Communication , 2006, IEEE Transactions on Information Theory.

[27]  Alon Orlitsky,et al.  Worst-case interactive communication - II: Two messages are not optimal , 1991, IEEE Trans. Inf. Theory.

[28]  P. Horodecki,et al.  Schmidt number for density matrices , 1999, quant-ph/9911117.

[29]  M. Horodecki,et al.  Entanglement and thermodynamical analogies , 1998, quant-ph/9805072.

[30]  Masahito Hayashi,et al.  Two-way classical communication remarkably improves local distinguishability , 2007, 0708.3154.

[31]  N. Gisin,et al.  Equivalence between two-qubit entanglement and secure key distribution. , 2003, Physical review letters.

[32]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[33]  Michael Nathanson,et al.  Three maximally entangled states can require two-way local operations and classical communications for local discrimination , 2014 .

[34]  Judit Bar-Ilan,et al.  Non-cryptographic fault-tolerant computing in constant number of rounds of interaction , 1989, PODC '89.

[35]  Eyal Kushilevitz,et al.  Communication Complexity , 1997, Adv. Comput..

[36]  Alexei Y. Kitaev,et al.  Parallelization, amplification, and exponential time simulation of quantum interactive proof systems , 2000, STOC '00.

[37]  F. F. Fanchini,et al.  Entanglement irreversibility from quantum discord and quantum deficit. , 2010, Physical review letters.

[38]  Dave Touchette,et al.  Near-Optimal Bounds on Bounded-Round Quantum Communication Complexity of Disjointness , 2015, FOCS.

[39]  Eric Chitambar,et al.  Asymptotic state discrimination and a strict hierarchy in distinguishability norms , 2013, 1311.1536.

[40]  Akihito Soeda,et al.  A Four-Round LOCC Protocol Outperforms All Two-Round Protocols in Reducing the Entanglement Cost for A Distributed Quantum Information Processing , 2016 .

[41]  Michal Horodecki,et al.  Unifying Classical and Quantum Key Distillation , 2007, TCC.

[42]  Prakash Ishwar,et al.  Some Results on Distributed Source Coding for Interactive Function Computation , 2011, IEEE Transactions on Information Theory.

[43]  Andreas J. Winter,et al.  Secret, public and quantum correlation cost of triples of random variables , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[44]  G. Vidal On the characterization of entanglement , 1998 .

[45]  M. Horodecki,et al.  Quantum entanglement , 2007, quant-ph/0702225.

[46]  Andreas J. Winter,et al.  The Private and Public Correlation Cost of Three Random Variables With Collaboration , 2014, IEEE Transactions on Information Theory.

[47]  Andrew Chi-Chih Yao,et al.  Some complexity questions related to distributive computing(Preliminary Report) , 1979, STOC.

[48]  Min-Hsiu Hsieh,et al.  Distributions Attaining Secret Key at a Rate of the Conditional Mutual Information , 2015, CRYPTO.

[49]  G. Brassard,et al.  Quantum Communication Complexity , 2003 .

[50]  M. Wolf,et al.  Irreversibility of entanglement distillation for a class of symmetric states , 2004 .

[51]  N. Gisin,et al.  Quantum correlations and secret bits. , 2003, Physical review letters.

[52]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[53]  U. Maurer,et al.  Secret key agreement by public discussion from common information , 1993, IEEE Trans. Inf. Theory.

[54]  Aaron D. Wyner,et al.  The common information of two dependent random variables , 1975, IEEE Trans. Inf. Theory.

[55]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..

[56]  Guifre Vidal Entanglement monotones , 1998, quant-ph/9807077.