The topology and dynamics of the hyperspaces of normal fuzzy sets and their inverse limit spaces

Given a compact and connected metric space (continuum) X, we study topological and dynamical properties of the hyperspace of normal fuzzy sets F1(X) equipped with the Hausdorff, endograph or sendograph metric. Among the many results we show that it is contractible, path connected, locally contractible, locally path connected, locally simply connected and locally connected. For the endograph metric the hyperspace F1(X) is a continuum, and then for a topological graph X we show how, using the inverse limit approach of Barge and Martin, the inverse limit of a fuzzy dynamical system on X can be realized as an attractor of a fuzzy dynamical system on a manifold.

[1]  Hao Zheng,et al.  No embeddings of solenoids into surfaces , 2006, math/0610820.

[2]  M. Barge,et al.  The construction of global attractors , 1990 .

[3]  J. Esterle,et al.  Michael’s problem and the Poincaré-Fatou-Bieberbach phenomenon , 1986 .

[4]  J. Segal Hyperspaces of the inverse limit space , 1959 .

[5]  H. Bruin Planar embeddings of inverse limit spaces of unimodal maps , 1999 .

[6]  Jiri Kupka On Devaney chaotic induced fuzzy and set-valued dynamical systems , 2011, Fuzzy Sets Syst..

[7]  M. Barge,et al.  The dynamics of continuous maps of finite graphs through inverse limits , 1994 .

[8]  Ryszard Engelking Zarys topologii ogólnej , 1965 .

[9]  H. Freudenthal,et al.  Entwicklungen von Räumen und ihren Gruppen , 1937 .

[10]  Morton Brown Some applications of an approximation theorem for inverse limits , 1960 .

[11]  Phil Diamond Chaos in Iterated Fuzzy Systems , 1994 .

[12]  Jiri Kupka,et al.  On the topological entropy on the space of fuzzy numbers , 2014, Fuzzy Sets Syst..

[13]  S. Mardešić On covering dimension and inverse limits of compact spaces , 1960 .

[14]  Jiri Kupka,et al.  On fuzzifications of discrete dynamical systems , 2011, Inf. Sci..

[15]  On intrinsic isometries to Euclidean space , 2010, 1003.5621.

[16]  Inverse limits and an implicitly defined difference equation from economics , 2007 .

[17]  P. Boyland,et al.  New rotation sets in a family of torus homeomorphisms , 2014, 1410.7727.

[18]  Yurilev Chalco-Cano,et al.  On turbulent, erratic and other dynamical properties of Zadeh’s extensions , 2011 .

[19]  Inverse limits as attractors in parameterized families , 2012, 1205.5660.

[20]  D. Dumitrescu Entropy of fuzzy dynamical systems , 1995 .

[21]  M. Barge,et al.  CHAOS, PERIODICITY, AND SNAKELIKE CONTINUA , 1985 .

[22]  Guo Wei,et al.  Dynamical systems over the space of upper semicontinuous fuzzy sets , 2012, Fuzzy Sets Syst..

[23]  R. F. Williams One-dimensional non-wandering sets , 1967 .

[24]  Sam B. Nadler,et al.  Continuum Theory: An Introduction , 1992 .

[25]  R. Goetschel,et al.  Topological properties of fuzzy numbers , 1983 .

[26]  James R. Brown Inverse limits, entropy and weak isomorphism for discrete dynamical systems , 1972 .

[27]  Scott S. Cramer Inverse limit reflection and the structure of L(Vλ+1) , 2015, J. Math. Log..

[28]  J. Rogers Chaos , 1876 .

[29]  P. Kloeden Fuzzy dynamical systems , 1982 .

[30]  Y. Sternfeld,et al.  Hyperspaces of two-dimensional continua , 1996, Fundamenta Mathematicae.

[31]  Wolfgang Trutschnig Characterization of the sendograph-convergence of fuzzy sets by means of their Lp- and levelwise convergence , 2010, Fuzzy Sets Syst..