Polymeric sensor materials: toward an alliance of combinatorial and rational design tools?

Increased selectivity, response speed, and sensitivity in the chemical and biological determinations of gases and liquids are of great interest. Particular attention is paid to polymeric sensor materials, which are applicable to sensors exploiting various energy transduction principles, such as radiant, electrical, mechanical, and thermal energy. Ideally, numerous functional parameters of sensor materials can be tailored to meet specific needs using rational design approaches. However, increasing the structural and functional complexity of polymeric sensor materials makes it more difficult to predict the desired properties. Combinatorial and high-throughput methods have had an impact on all areas of research on polymer-based sensor materials including homo- and copolymers, formulated materials, polymeric structures with engineered morphology, and molecular shape-recognition materials. Herein we report on the state-of-the-art, the development trends, and the remaining knowledge gaps in the area of combinatorial polymeric sensor materials design.

[1]  Shatkay Ion specific membranes as electrodes in determination of activity of calcium , 1967 .

[2]  J. Kiel,et al.  In vitro selection of DNA aptamers to anthrax spores with electrochemiluminescence detection. , 1999, Biosensors & bioelectronics.

[3]  Andrew D. Ellington,et al.  Hydrogel Biosensor Array Platform Indexed by Shape , 2004 .

[4]  Joseph A. Gardella,et al.  Tools to Rapidly Produce and Screen Biodegradable Polymer and Sol-Gel-Derived Xerogel Formulations , 2002 .

[5]  S. Asher,et al.  Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials , 1997, Nature.

[6]  W. Schuhmann,et al.  An electrochemical robotic system for the optimization of amperometric glucose biosensors based on a library of cathodic electrodeposition paints , 2004 .

[7]  H. Koinuma,et al.  Combinatorial solid-state chemistry of inorganic materials , 2004, Nature materials.

[8]  R. Potyrailo,et al.  Spectroscopic and imaging approaches for evaluation of properties of one-dimensional arrays of formulated polymeric materials fabricated in a combinatorial microextruder system , 2005 .

[9]  Jens Scheidtmann,et al.  A combinatorial technique for the search of solid state gas sensor materials , 2004 .

[10]  B. Danielsson,et al.  Preparation and characterization of composite polymers exhibiting both selective molecular recognition and electrical conductivity , 1995 .

[11]  G. Shaw,et al.  Quenching by oxygen diffusion of phosphorescence emission of aromatic molecules in polymethyl methacrylate , 1967 .

[12]  Tse-Chuan Chou,et al.  Enthalpy changes associated with protein binding to thin films. , 2005, Biosensors & bioelectronics.

[13]  Fred C. Unterleitner,et al.  Measurement of the Diffusion of Oxygen in Polymers by Phosphorescent Quenching1 , 1965 .

[14]  N. Lewis,et al.  Use of compatible polymer blends to fabricate arrays of carbon black-polymer composite vapor detectors. , 1998, Analytical chemistry.

[15]  Boris Mizaikoff,et al.  Model-based optimal design of polymer-coated chemical sensors. , 2003, Analytical chemistry.

[16]  Edgar Voges,et al.  Periodically structured metallic substrates for SERS , 1998 .

[17]  L. Gold,et al.  Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. , 1990, Science.

[18]  Olof Ramström,et al.  Peer Reviewed: Molecular Imprinting: New Possibilities for Sensor Technology , 1997 .

[19]  J. Szostak,et al.  Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures , 1992, Nature.

[20]  Thomas Thundat,et al.  Detection of CrO4(2-) using a hydrogel swelling microcantilever sensor. , 2003, Analytical chemistry.

[21]  Eric J Amis,et al.  Reaching beyond discovery , 2004, Nature materials.

[22]  Jungbae Kim,et al.  Enzymatically and Combinatorially Generated Array‐Based Polyphenol Metal Ion Sensor , 2000, Biotechnology progress.

[23]  C Gärtner,et al.  Polymer microfabrication methods for microfluidic analytical applications , 2000, Electrophoresis.

[24]  M. Davies,et al.  Approaches to the rational design of molecularly imprinted polymers , 2004 .

[25]  Wilfried Weigel,et al.  Novel molecularly imprinted polymer (MIP) composite membranes via controlled surface and pore functionalizations , 2002 .

[26]  Sonja Draxler,et al.  Effects of Polymer Matrixes on the Time-Resolved Luminescence of a Ruthenium Complex Quenched by Oxygen , 1995 .

[27]  Radislav A. Potyrailo,et al.  Multifunctional sensor system for high-throughput primary, secondary, and tertiary screening of combinatorial materials , 2004 .

[28]  Christoph Hagleitner,et al.  Application-specific sensor systems based on CMOS chemical microsensors , 2000 .

[29]  M. B. Bever,et al.  Gradients in polymeric materials , 1972 .

[30]  R. Grubbs,et al.  Synthesis of ABA triblock copolymers of norbornenes and 7-oxanorbornenes via living ring-opening metathesis polymerization using well-defined, bimetallic ruthenium catalysts , 1996 .

[31]  P. Gómez‐Romero Hybrid Organic–Inorganic Materials—In Search of Synergic Activity , 2001 .

[32]  Chin I Lin,et al.  Molecularly imprinted polymeric film on semiconductor nanoparticles analyte detection by quantum dot photoluminescence. , 2004, Journal of chromatography. A.

[33]  R. Crooks Patterning of hyperbranched polymer films. , 2001, Chemphyschem : a European journal of chemical physics and physical chemistry.

[34]  Olivier Lavastre,et al.  Discovery of new fluorescent materials from fast synthesis and screening of conjugated polymers. , 2002, Journal of the American Chemical Society.

[35]  S. Jayasena Aptamers: an emerging class of molecules that rival antibodies in diagnostics. , 1999, Clinical chemistry.

[36]  T. Schalkhammer,et al.  Structural behavior of nanometric carbohydrate films transduced by a resonant technique. , 2003, Biopolymers.

[37]  M. Mehrvar,et al.  Recent Developments, Characteristics, and Potential Applications of Electrochemical Biosensors , 2004, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[38]  M. Kotaki,et al.  A review on polymer nanofibers by electrospinning and their applications in nanocomposites , 2003 .

[39]  A. T. Johnson,et al.  Fabrication and electrical characterization of polyaniline-based nanofibers with diameter below 30 nm , 2003 .

[40]  Jandeleit,et al.  Combinatorial Materials Science and Catalysis. , 1999, Angewandte Chemie.

[41]  K Mosbach,et al.  Assay system for the herbicide 2,4-dichlorophenoxyacetic Acid using a molecularly imprinted polymer as an artificial recognition element. , 1998, Analytical chemistry.

[42]  Younan Xia,et al.  Nanofibers of Conjugated Polymers Prepared by Electrospinning with a Two‐Capillary Spinneret , 2004 .

[43]  Gelii V. Ponomarev,et al.  Phosphorescent Complexes of Porphyrin Ketones: Optical Properties and Application to Oxygen Sensing , 1995 .

[44]  H. Salavagione,et al.  Novel synthetic methods to produce functionalized conducting polymers I. Polyanilines , 2004 .

[45]  G. Bidan,et al.  Electroconducting conjugated polymers: New sensitive matrices to build up chemical or electrochemical sensors. A review☆ , 1992 .

[46]  Andrew Mills,et al.  Controlling the sensitivity of optical oxygen sensors , 1998 .

[47]  P. Bartlett,et al.  Theoretical treatment of diffusion and kinetics in amperometric immobilized enzyme electrodes Part I: Redox mediator entrapped within the film , 1995 .

[48]  David S. Ballantine,et al.  Acoustic wave sensors : theory, design, and physico-chemical applications , 1997 .

[49]  A. Barbetta,et al.  Porous polymers by emulsion templating , 2005 .

[50]  Donald J. Rose,et al.  Characterization of an inkjet chemical microdispenser for combinatorial library synthesis , 1997 .

[51]  D R Walt,et al.  Fast temporal response fiber-optic chemical sensors based on the photodeposition of micrometer-scale polymer arrays. , 1997, Analytical chemistry.

[52]  A. Pardi,et al.  Molecular interactions and metal binding in the theophylline-binding core of an RNA aptamer. , 2000, RNA.

[53]  G. Barrett,et al.  Chemical grafting of molecularly imprinted homopolymers to the surface of microplates. Application of artificial adrenergic receptor in enzyme-linked assay for beta-agonists determination. , 2000, Analytical chemistry.

[54]  Radislav A. Potyrailo,et al.  Sensors in Combinatorial Polymer Research , 2004 .

[55]  Li Zhang,et al.  The influence of composition on the properties of pH-swellable polymers for chemical sensors , 1997 .

[56]  Andrew W. Szumlas,et al.  A dual-parameter optical sensor fabricated by gradient axial doping of an optical fibre , 2005 .

[57]  K. Schanze,et al.  Micro-heterogeneous Oxygen Response in Luminescence Sensor Films , 2000 .

[58]  F. Dickert,et al.  Chapter 21 - Non-covalent molecularly imprinted sensors for vapours, polyaromatic hydrocarbons and complex mixtures , 2001 .

[59]  W. G. Delinger,et al.  Gas sensing using embedded piezoresistive microcantilever sensors , 2004 .

[60]  L. Gold,et al.  Oligonucleotides as Research, Diagnostic, and Therapeutic Agents(*) , 1995, The Journal of Biological Chemistry.

[61]  J. Hanak The “multiple-sample concept” in materials research: Synthesis, compositional analysis and testing of entire multicomponent systems , 1970 .

[62]  I. Bergman,et al.  Rapid-response Atmospheric Oxygen Monitor based on Fluorescence Quenching , 1968, Nature.

[63]  Duncan E Akporiaye Towards a Rational Synthesis of Large-Pore Zeolite-Type Materials? , 1998, Angewandte Chemie.

[64]  R. Farris,et al.  Mechanical behavior of electrospun polyurethane , 2003 .

[65]  B. Danielsson,et al.  Chemiluminescence imaging ELISA using an imprinted polymer as the recognition element instead of an antibody. , 2001, Analytical chemistry.

[66]  Makoto Furuki,et al.  Hybrid gas detector of squarylium dye Langmuir-Blodgett film deposited on a quartz oscillator , 1992 .

[67]  Annalisa Convertino,et al.  A New Approach to Organic Solvent Detection: High‐Reflectivity Bragg Reflectors Based on a Gold Nanoparticle/Teflon‐like Composite Material , 2003 .

[68]  A. Jäschke,et al.  In Vitro Selected Oligonucleotides as Tools in Organic Chemistry , 1999 .

[69]  Karsten Haupt,et al.  Molecularly Imprinted Polymers and Infrared Evanescent Wave Spectroscopy. A Chemical Sensors Approach , 1999 .

[70]  T. Swager,et al.  Conjugated polymer-based chemical sensors. , 2000, Chemical reviews.

[71]  Khalil Arshak,et al.  Determination of the electrical behaviour of surfactant treated polymer/carbon black composite gas sensors , 2005 .

[72]  P. Bartlett,et al.  Modelling of processes in enzyme electrodes , 1993 .

[73]  W. Goddard,et al.  Hildebrand and Hansen solubility parameters from Molecular Dynamics with applications to electronic nose polymer sensors , 2004, J. Comput. Chem..

[74]  Ernö Pretsch,et al.  Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 1. General Characteristics. , 1997, Chemical reviews.

[75]  Hiroaki Suzuki,et al.  Advances in the Microfabrication of Electrochemical Sensors and Systems , 2000 .

[76]  S. Siggia,et al.  Separation and concentration of azo compounds with crosslinked poly(vinylpyrrolidone) , 1976 .

[77]  Otto S. Wolfbeis,et al.  Multiparameter High Throughput Characterization of Combinatorial Chemical Microarrays of Chemosensitive Polymers , 2004 .

[78]  Börje Sellergren,et al.  Water-compatible molecularly imprinted polymers obtained via high-throughput synthesis and experimental design. , 2003, Journal of the American Chemical Society.

[79]  Andrew D Ellington,et al.  Selecting nucleic acids for biosensor applications. , 2002, Combinatorial chemistry & high throughput screening.

[80]  J C Cox,et al.  Automated RNA Selection , 1998, Biotechnology progress.

[81]  Ryan C Bailey,et al.  Micropatterned polymeric gratings as chemoresponsive volatile organic compound sensors: implications for analyte detection and identification via diffraction-based sensor arrays. , 2003, Analytical chemistry.

[82]  J. Hupp,et al.  Large-scale resonance amplification of optical sensing of volatile compounds with chemoresponsive visible-region diffraction gratings. , 2002, Journal of the American Chemical Society.

[83]  M. Famulok,et al.  Nucleic acid aptamers-from selection in vitro to applications in vivo. , 2000, Accounts of chemical research.

[84]  Boris Mizaikoff,et al.  Molecularly imprinted polymers—potential and challenges in analytical chemistry , 2005, Analytica Chimica Acta.

[85]  Younan Xia,et al.  Electrospinning of Nanofibers: Reinventing the Wheel? , 2004 .

[86]  W. H. King Piezoelectric Sorption Detector. , 1964 .

[87]  Gerhard Heinzmann,et al.  Development of a submicron optochemical potassium sensor with enhanced stability due to internal reference , 1998 .

[88]  Mar Michael Meier,et al.  Combinatorial Methods, Automated Synthesis and High-Throughput Screening in Polymer Research: Past and Present , 2003 .

[89]  A. Hierlemann,et al.  Use of linear solvation energy relationships for modeling responses from polymer-coated acoustic-wave vapor sensors. , 2001, Analytical chemistry.

[90]  N. Lewis,et al.  A chemically diverse conducting polymer-based "electronic nose". , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[91]  G. Fortier,et al.  Behavior of glucose oxidase immobilized in various electropolymerized thin films , 2000, Biotechnology and bioengineering.

[92]  Michael Sepaniak,et al.  Microcantilever transducers: a new approach in sensor technology. , 2002, Analytical chemistry.

[93]  Matthias Otto,et al.  Chemometrics: Statistics and Computer Application in Analytical Chemistry , 1999 .

[94]  Joachim Kohn,et al.  New approaches to biomaterials design , 2004, Nature materials.

[95]  G. Whitesides,et al.  Unconventional Methods for Fabricating and Patterning Nanostructures. , 1999, Chemical reviews.

[96]  Dmitry Kirsanov,et al.  Cross-sensitive chemical sensors based on tetraphenylporphyrin and phthalocyanine , 2002 .

[97]  M. Stojanović,et al.  Modular aptameric sensors. , 2004, Journal of the American Chemical Society.

[98]  Michael J. Sailor,et al.  Polymer Replicas of Photonic Porous Silicon for Sensing and Drug Delivery Applications , 2003, Science.

[99]  Margarita Guenther,et al.  Application of sensitive hydrogels in chemical and pH sensors , 2004 .

[100]  B. Adhikari,et al.  Polymers in sensor applications , 2004 .

[101]  Michael R. Caplan,et al.  Nature's Complex Copolymers: Engineering Design of Oligopeptide Materials , 2002 .

[102]  O. Wolfbeis,et al.  Ammonia fluorosensors based on reversible lactonization of polymer-entrapped rhodamine dyes, and the effects of plasticizers , 1996 .

[103]  Richard B. Brown,et al.  Enhancing EMF stability of solid-state ion-selective sensors by incorporating lipophilic silver-ligand complexes within polymeric films , 1996 .

[104]  Andreas Hierlemann,et al.  CMOS-based chemical microsensors. , 2003, The Analyst.

[105]  G. Gauglitz,et al.  Dyeless optical detection of ammonia in the gas phase using pH-responsive polymers with reflectometric interference spectroscopy , 1998 .

[106]  R. A. McGill,et al.  Determination of partition coefficients from surface acoustic wave vapor sensor responses and correlation with gas-liquid chromatographic partition coefficients , 1988 .

[107]  John T McDevitt,et al.  Aptamer-based sensor arrays for the detection and quantitation of proteins. , 2004, Analytical chemistry.

[108]  Bobby G. Sumpter,et al.  Computational neural networks and the rational design of polymeric materials: the next generation polycarbonates , 1998 .

[109]  N. Lewis,et al.  Combinatorial approaches to the synthesis of vapor detector arrays for use in an electronic nose. , 2000, Journal of combinatorial chemistry.

[110]  J. Szostak,et al.  In vitro selection of RNA molecules that bind specific ligands , 1990, Nature.

[111]  K. Persaud,et al.  Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose , 1982, Nature.

[112]  Howard Turner,et al.  Kombinatorische Materialforschung und Katalyse , 1999 .

[113]  William P Flanagan,et al.  Development of combinatorial chemistry methods for coatings: high-throughput adhesion evaluation and scale-up of combinatorial leads. , 2003, Journal of combinatorial chemistry.

[114]  G. S. Wilson,et al.  Electrochemically mediated electrodeposition/electropolymerization to yield a glucose microbiosensor with improved characteristics. , 2002, Analytical chemistry.

[115]  Yu Xuan,et al.  Solvent vapor induced dewetting in diblock copolymer thin films , 2005 .

[116]  Analysis of combined mass‐ and volume‐transducing sensor arrays , 2003 .

[117]  G. Murray,et al.  Chapter 19 - Ionic sensors based on molecularly imprinted polymers , 2001 .

[118]  Jeff Blyth,et al.  pH-sensitive holographic sensors. , 2003, Analytical chemistry.

[119]  K. Shea,et al.  Combinatorial methods in molecular imprinting. , 2003, Current opinion in chemical biology.

[120]  Sergey A. Piletsky,et al.  Rational design of a polymer specific for microcystin-LR using a computational approach. , 2002, Analytical chemistry.

[121]  D R Walt,et al.  Optical sensor arrays for odor recognition. , 1998, Biosensors & bioelectronics.

[122]  Daniel Mandler,et al.  Parathion Sensor Based on Molecularly Imprinted Sol−Gel Films , 2004 .

[123]  Irwin D Kuntz,et al.  Free energy calculations for theophylline binding to an RNA aptamer: Comparison of MM-PBSA and thermodynamic integration methods. , 2003, Biopolymers.

[124]  Radislav A Potyrailo,et al.  Development of combinatorial chemistry methods for coatings: high-throughput screening of abrasion resistance of coatings libraries. , 2002, Analytical chemistry.

[125]  I. Hamley,et al.  Nanotechnology with soft materials. , 2003, Angewandte Chemie.

[126]  D. Erickson,et al.  Integrated microfluidic devices , 2004 .

[127]  A. Karim,et al.  Control of Polystyrene Film Dewetting through Sulfonation and Metal Complexation , 1998 .

[128]  Yuehe Lin,et al.  Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors. , 2003, Journal of the American Chemical Society.

[129]  J. Grate Acoustic wave microsensor arrays for vapor sensing. , 2000, Chemical reviews.

[130]  O. Wolfbeis Fiber-optic chemical sensors and biosensors. , 2000, Analytical chemistry.

[131]  K. Haupt,et al.  Molecularly imprinted polymers in analytical chemistry. , 2001, The Analyst.

[132]  Ernö Pretsch,et al.  Rational design of potentiometric trace level ion sensors. A Ag+-selective electrode with a 100 ppt detection limit. , 2002, Analytical chemistry.

[133]  D. Patel,et al.  Adaptive recognition by nucleic acid aptamers. , 2000, Science.

[134]  F. Arregui,et al.  An experimental study about hydrogels for the fabrication of optical fiber humidity sensors , 2003 .

[135]  I. R. Martín-Domínguez,et al.  Numerical method to evaluate the influence of organic solvent absorption on the conductivity of polymeric composites , 2002 .

[136]  T. Vo‐Dinh,et al.  Surface‐enhanced Raman detection of chemical vapors with the use of personal dosimeters , 1999 .

[137]  Jiri Janata,et al.  Principles of Chemical Sensors , 1989 .

[138]  A. Merkoçi,et al.  New materials for electrochemical sensing IV. Molecular imprinted polymers , 2002 .

[139]  Rahul Singhal,et al.  Poly‐3‐hexyl thiophene Langmuir‐Blodgett films for application to glucose biosensor , 2004, Biotechnology and bioengineering.

[140]  A. Ellington,et al.  Adapting selected nucleic acid ligands (aptamers) to biosensors. , 1998, Analytical chemistry.

[141]  F. Navarro-Villoslada,et al.  APPLICATION OF MULTIVARIATE ANALYSIS TO THE SCREENING OF MOLECULARLY IMPRINTED POLYMERS FOR BISPHENOL A , 2004 .

[142]  T A Dickinson,et al.  Generating Sensor Diversity through Combinatorial Polymer Synthesis. , 1997, Analytical chemistry.

[143]  Roald Hoffmann Prof. Not a Library , 2001 .

[144]  J. Rühe,et al.  Swelling Behavior of Thin, Surface-Attached Polymer Networks , 2004 .

[145]  R. Newnham Structure-Property Relationships in Sensors , 1988 .

[146]  V. Morozov,et al.  Electrospray deposition as a method for mass fabrication of mono- and multicomponent microarrays of biological and biologically active substances. , 1999, Analytical chemistry.

[147]  P. Calvert Inkjet Printing for Materials and Devices , 2001 .

[148]  Jean-François Feller,et al.  Conductive polymer composites (CPCs): comparison of electrical properties of poly(ethylene-co-ethyl acrylate)-carbon black with poly(butylene terephthalate)/poly(ethylene-co-ethyl acrylate)-carbon black† , 2002 .

[149]  Juewen Liu,et al.  New highly sensitive and selective catalytic DNA biosensors for metal ions. , 2003, Biosensors & bioelectronics.

[150]  Doan,et al.  Control of energy transfer in oriented conjugated polymer-mesoporous silica composites , 2000, Science.

[151]  X. Yao,et al.  A new form of nanosized SrTiO3 material for near-human-body temperature oxygen sensing applications , 2004 .

[152]  Arthur W. Snow,et al.  Simultaneous electrical conductivity and piezoelectric mass measurements on iodine-doped phthalocyanine Langmuir-Blodgett films , 1986 .

[153]  Radislav A Potyrailo,et al.  Boosting sensitivity of organic vapor detection with silicone block polyimide polymers. , 2004, Analytical chemistry.

[154]  John J. Lavigne,et al.  Aufspüren eines Paradigmenwechsels auf dem Gebiet der molekularen Erkennung: von den selektiven Rezeptoren zu den differenziellen Rezeptoren , 2001 .

[155]  J. Ferraris,et al.  Electrospun MEH-PPV/SBA-15 composite nanofibers using a dual syringe method. , 2003, Journal of the American Chemical Society.

[156]  M. Penza,et al.  SAW gas detection using Langmuir–Blodgett polypyrrole films , 1998 .

[157]  Radislav A. Potyrailo,et al.  High-Throughput Analysis , 2003 .

[158]  G. Bidan,et al.  New nanocomposite materials made of an insulating matrix and conducting fillers: Processing and properties , 2000 .

[159]  Jiri Janata,et al.  Conducting polymers in electronic chemical sensors , 2003, Nature materials.

[160]  Duncan Akporiaye Eine rationale Synthese großporiger Zeolith‐artiger Materialien? , 1998 .

[161]  Yi Xiao,et al.  Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin. , 2004, Journal of the American Chemical Society.

[162]  A D Ellington,et al.  Anti-peptide aptamers recognize amino acid sequence and bind a protein epitope. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[163]  V. F. Zackay,et al.  Rapid Method for Determining Ternary‐Alloy Phase Diagrams , 1965 .

[164]  Toshifumi Takeuchi,et al.  Combinatorial Molecular Imprinting: An Approach to Synthetic Polymer Receptors , 1999 .

[165]  O. Wolfbeis,et al.  High-throughput analysis of bulk and contact conductance of polymer layers on electrodes , 2004 .

[166]  M E Eberhart,et al.  Looking for design in materials design , 2004, Nature materials.

[167]  †‡§ and Iqbal Gill,et al.  Encapsulation of Biologicals within Silicate, Siloxane, and Hybrid Sol−Gel Polymers: An Efficient and Generic Approach , 1998 .

[168]  Joseph T. Hupp,et al.  Sensing via optical interference , 2005 .

[169]  E. Wang,et al.  Influence of nonionic surfactants on the optical response of cation selective membrane films , 1999 .

[170]  Jintao Zhu,et al.  Multiscale dewetting of triblock copolymer thin film induced by solvent vapor , 2005 .

[171]  A. Greiner,et al.  Polymer Nanotubes by Wetting of Ordered Porous Templates , 2002, Science.

[172]  T. Swager,et al.  A Poly(p-phenyleneethynylene) with a Highly Emissive Aggregated Phase , 2000 .

[173]  V. Ferrari,et al.  Use of compatible blends to fabricate carbon black composite vapor detectors , 2004 .

[174]  G. Wulff,et al.  Über die Anwendung von enzymanalog gebauten Polymeren zur Racemattrennung , 1972 .

[175]  Jay W. Grate,et al.  Hybrid Organic/Inorganic Copolymers with Strongly Hydrogen-Bond Acidic Properties for Acoustic Wave and Optical Sensors , 1997 .

[176]  R. A. McGill,et al.  Dewetting Effects on Polymer-Coated Surface Acoustic Wave Vapor Sensors , 1995 .

[177]  Pankaj Gupta,et al.  Some investigations on the fiber formation by utilizing a side-by-side bicomponent electrospinning approach , 2003 .

[178]  Taehyung Kim,et al.  Sensors and sensor arrays based on conjugated polymers and carbon nanotubes , 2002 .

[179]  Richard B. Kaner,et al.  Polyaniline Nanofiber Gas Sensors: Examination of Response Mechanisms , 2004 .

[180]  W. Schuhmann,et al.  Combinatorial synthesis of a library of acrylic acid-based polymers and their evaluation as immobilisation matrix for amperometric biosensors , 2004 .

[181]  Ian W. Hamley Nanotechnologie mit weichen Materialien , 2003 .

[182]  J. Grate,et al.  Solubility interactions and the design of chemically selective sorbent coatings for chemical sensors and arrays , 1991 .

[183]  U. Schubert,et al.  Inkjet printing of well-defined polymer dots and arrays. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[184]  L. Miller,et al.  Conductometric Sensors Based on the Hypersensitive Response of Plasticized Polyaniline Films to Organic Vapors , 1998 .

[185]  J. Luong,et al.  Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. , 2004, Analytical chemistry.

[186]  Joseph Wang,et al.  Carbon nanotube/teflon composite electrochemical sensors and biosensors. , 2003, Analytical chemistry.

[187]  David R Walt,et al.  Fluorescence-based fibre optic arrays: a universal platform for sensing. , 2003, Chemical Society reviews.

[188]  O. Wolfbeis,et al.  Combinatorial Approach Towards Materials for Optical Ion Sensors , 2004 .

[189]  D. Klockow,et al.  Surface‐Enhanced Raman Scattering on Molecularly Imprinted Polymers in Water , 2003 .

[190]  Nathan S. Lewis,et al.  Array-based vapor sensing using chemically sensitive, carbon black-Polymer resistors , 1996 .

[191]  R. Niessner,et al.  Molecularly imprinted polymer for metsulfuron-methyl and its binding characteristics for sulfonylurea herbicides , 2002 .

[192]  Takashi Miyata,et al.  A reversibly antigen-responsive hydrogel , 1999, Nature.

[193]  V. Mirsky,et al.  Equipment for combinatorial electrochemical polymerization and high-throughput investigation of electrical properties of the synthesized polymers , 2004 .

[194]  I. Nicholls Towards the rational design of molecularly imprinted polymers , 1998, Journal of molecular recognition : JMR.

[195]  L. McGown,et al.  The nucleic acid ligand. A new tool for molecular recognition. , 1995, Analytical chemistry.

[196]  Kaushal Rege,et al.  Enzyme-Polymer-Single Walled Carbon Nanotube Composites as Biocatalytic Films , 2003 .

[197]  D. Engelke,et al.  DNA ligands that bind tightly and selectively to cellobiose. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[198]  Gÿbor Harsÿnyi,et al.  Polymer Films in Sensor Applications , 1995 .

[199]  David C. Stone,et al.  Surface-Launched Acoustic Wave Sensors: Chemical Sensing and Thin-Film Characterization , 1997 .

[200]  Radislav A. Potyrailo,et al.  Introduction: Combinatorial instruments and techniques , 2005 .

[201]  A. Ellington,et al.  In vitro selection of aptamers: the dearth of pure reason. , 1996, Current opinion in structural biology.

[202]  P. Bühlmann,et al.  Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 2. Ionophores for Potentiometric and Optical Sensors. , 1998, Chemical reviews.

[203]  Bin Zhang,et al.  Preparation and characterization of gas-sensitive composites from multi-walled carbon nanotubes/polystyrene , 2005 .

[204]  Liqing Wu,et al.  Study on the recognition of templates and their analogues on molecularly imprinted polymer using computational and conformational analysis approaches , 2004, Journal of molecular recognition : JMR.

[205]  Iqbal Gill,et al.  Bio-doped Nanocomposite Polymers: Sol-Gel Bioencapsulates , 2001 .

[206]  C. Hagleitner,et al.  Smart single-chip gas sensor microsystem , 2001, Nature.

[207]  K. Eaton A novel colorimetric oxygen sensor: dye redox chemistry in a thin polymer film , 2002 .

[208]  M. Ward,et al.  In Situ Interfacial Mass Detection with Piezoelectric Transducers , 1990, Science.

[209]  M. Sepaniak,et al.  Cantilever transducers as a platform for chemical and biological sensors , 2004 .

[210]  A. A. Gusev,et al.  Rational Design of Nanocomposites for Barrier Applications , 2001 .

[211]  L. Blum,et al.  Enhanced luminescent response of a fibre-optic sensor for H2O2 by a high-salt-concentration medium , 1997 .

[212]  Carlos J. Martinez,et al.  Effect of Morphology on the Response of Polyaniline-based Conductometric Gas Sensors: Nanofibers vs. Thin Films , 2004 .

[213]  B. Sellergren,et al.  Method for synthesis and screening of large groups of molecularly imprinted polymers. , 1999, Analytical chemistry.

[214]  Mitsuyoshi Onoda,et al.  Nanostructured Conjugated Polymer Films by Electrophoretic Deposition , 2002 .

[215]  D. Drolet,et al.  An enzyme-linked oligonucleotide assay , 1996, Nature Biotechnology.

[216]  M. Rafailovich,et al.  Control of Dewetting Dynamics by Adding Nanoparticle Fillers , 2001 .

[217]  John M. Warman,et al.  Highly mobile electrons and holes on isolated chains of the semiconducting polymer poly(phenylene vinylene) , 1998, Nature.

[218]  M. Narkis,et al.  A preliminary investigation of conductive immiscible polymer blends as sensor materials , 2000 .

[219]  Jochen S. Gutmann,et al.  Synthesis and Characterization of Polymer Brushes on Micromechanical Cantilevers , 2004 .

[220]  Xu,et al.  "Dip-Pen" nanolithography , 1999, Science.

[221]  I. Wilson,et al.  An unexpected selectivity of a propranolol-derived molecular imprint for tamoxifen. , 2001, The Analyst.

[222]  Andreas Brecht,et al.  Recent developments in optical transducers for chemical or biochemical applications , 1997 .

[223]  Jungbae Kim,et al.  Enzymatically generated polyphenols as array-based metal-ion sensors , 1998 .

[224]  M. Meyerhoff,et al.  Origin of non-Nernstian anion response slopes of metalloporphyrin-based liquid/polymer membrane electrodes. , 2000, Analytical chemistry.

[225]  Bharathibai J. Basu,et al.  Optical oxygen sensor coating based on the fluorescence quenching of a new pyrene derivative , 2005 .

[226]  H. Müller,et al.  Influence of the organic matrix on the properties of membrane coated ion sensor field-effect transistors , 1999 .

[227]  A. Manz,et al.  Micro total analysis systems. Recent developments. , 2004, Analytical chemistry.

[228]  Yu Qin,et al.  Plasticizer-free microspheres for ionophore-based sensing and extraction based on a methyl methacrylate-decyl methacrylate copolymer matrix , 2003 .

[229]  D. Walt,et al.  A fiber-optic microarray biosensor using aptamers as receptors. , 2000, Analytical biochemistry.

[230]  A. Hierlemann,et al.  Effective use of molecular recognition in gas sensing: results from acoustic wave and in situ FT-IR measurements. , 1999, Analytical chemistry.

[231]  Wouter Olthuis,et al.  Stimulus-sensitive hydrogels and their applications in chemical (micro)analysis. , 2003, The Analyst.

[232]  M. Leclerc Optical and Electrochemical Transducers Based on Functionalized Conjugated Polymers , 1999 .

[233]  C. Maranas Optimal Computer-Aided Molecular Design: A Polymer Design Case Study , 1996 .

[234]  William G Delinger,et al.  Viral detection using an embedded piezoresistive microcantilever sensor , 2003 .

[235]  S. Manalis,et al.  Micromechanical detection of proteins using aptamer-based receptor molecules. , 2004, Analytical chemistry.

[236]  S. Middelhoek,et al.  Three-dimensional representation of input and output transducers , 1981 .

[237]  A D Ellington,et al.  In Vitro Selection of RNA Molecules That Inhibit the Activity of Ricin A-chain* , 2000, The Journal of Biological Chemistry.

[238]  S. E. Hobbs,et al.  Near-ultraviolet evanescent-wave absorption sensor based on a multimode optical fiber. , 1998, Analytical chemistry.

[239]  S. E. Hobbs,et al.  Optical waveguide sensors in analytical chemistry: today’s instrumentation, applications and trends for future development , 1998 .

[240]  J. Janata Electrochemical Sensors and Their Impedances: a Tutorial , 2002 .

[241]  K Mosbach,et al.  Imprinted polymer-based sensor system for herbicides using differential-pulse voltammetry on screen-printed electrodes. , 1999, Analytical chemistry.

[242]  Radislav A. Potyrailo,et al.  High‐Throughput Fabrication, Performance Testing, and Characterization of One‐Dimensional Libraries of Polymeric Compositions , 2003 .

[243]  H. Mower,et al.  Cyanocarbon Chemistry. VI.1 Tricyanovinylamines , 1958 .

[244]  N. Sugimoto,et al.  Composite of Au nanoparticles and molecularly imprinted polymer as a sensing material. , 2004, Analytical chemistry.

[245]  Mario Leclerc,et al.  Optical sensors based on hybrid DNA/conjugated polymer complexes. , 2005, Chemistry.

[246]  G. Whitesides,et al.  Soft lithography in biology and biochemistry. , 2001, Annual review of biomedical engineering.

[247]  H. Craighead,et al.  Polymeric nanowire architectureElectronic supplementary information (ESI) available: frontispiece figure. See http://www.rsc.org/suppdata/jm/b4/b401804b/ , 2004 .

[248]  M A Ryan,et al.  Molecular modeling of polymer composite-analyte interactions in electronic nose sensors. , 2003, Sensors and actuators. B, Chemical.

[249]  Radislav A. Potyrailo,et al.  Recognition and Quantification of Perchloroethylene, Trichloroethylene, Vinyl Chloride, and Three Isomers of Dichloroethylene Using Acoustic Wave Sensor Array , 2004 .

[250]  V. Remcho,et al.  Aptamers as analytical reagents , 2002, Electrophoresis.

[251]  James M Helt,et al.  A benchtop method for the fabrication and patterning of nanoscale structures on polymers. , 2004, Journal of the American Chemical Society.

[252]  C. Ho,et al.  Resistivity measurements of carbon–polymer composites in chemical sensors: impact of carbon concentration and geometry , 2004 .

[253]  Michael H. Abraham,et al.  Scales of solute hydrogen-bonding: their construction and application to physicochemical and biochemical processes , 2010 .

[254]  A. Mills,et al.  Effect of plasticizer-polymer compatibility on the response characteristics of optical thin CO2 and O2 sensing films , 1998 .

[255]  Jayant Kumar,et al.  Electrospun Nanofibrous Membranes for Highly Sensitive Optical Sensors , 2002 .

[256]  M. Sepaniak,et al.  Improving the analytical figures of merit of SERS for the analysis of model environmental pollutants , 2004 .

[257]  Ulrich S. Schubert,et al.  Combinatorial and high-throughput approaches in polymer and materials science: Hype or real paradigm shift? , 2004 .

[258]  R. Potyrailo,et al.  Development of combinatorial chemistry methods for coatings: high-throughput optimization of curing parameters of coatings libraries. , 2002, Analytical chemistry.

[259]  W. Schuhmann,et al.  Acrylic Acid-Based Copolymers as Immobilization Matrix for Amperometric Biosensors , 2003 .

[260]  M. Kempe,et al.  Synthesis and screening of a molecularly imprinted polymer library targeted for penicillin G. , 2003, Journal of combinatorial chemistry.

[261]  Y. Amao,et al.  Probes and Polymers for Optical Sensing of Oxygen , 2003 .

[262]  B. Ziaie,et al.  High-resolution technique for fabricating environmentally sensitive hydrogel microstructures. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[263]  F. Lux,et al.  Models proposed to explain the electrical conductivity of mixtures made of conductive and insulating materials , 1993 .

[264]  Nicole J. Kline,et al.  Solution-Based Assembly of Metal Surfaces by Combinatorial Methods , 1996 .

[265]  H. Hill,et al.  Evaluating the separation of amphetamines by electrospray ionization ion mobility spectrometry/MS and charge competition within the ESI process. , 2002, Analytical chemistry.

[266]  A. Karim,et al.  Suppression of Dewetting in Nanoparticle-Filled Polymer Films , 2000 .

[267]  Jun Lu,et al.  Surface-enhanced Raman scattering from analytes adsorbed on gold nanoparticles inside polymer beads , 2004 .

[268]  Jay W. Grate,et al.  Method for Estimating Polymer-Coated Acoustic Wave Vapor Sensor Responses , 1995 .

[269]  J. Grate,et al.  Selective vapor sorption by polymers and cavitands on acoustic wave sensors:  is this molecular recognition? , 1996, Analytical chemistry.

[270]  Johan Bobacka,et al.  Potentiometric Ion Sensors Based on Conducting Polymers , 2003 .

[271]  C. Massera,et al.  Rational design of cavitand receptors for mass sensors. , 2003, Journal of the American Chemical Society.

[272]  Patel,et al.  Differentiation of chemical components in a binary solvent vapor mixture using carbon/polymer composite-based chemiresistors , 2000, Analytical chemistry.

[273]  T. Vo‐Dinh,et al.  Selective surface-enhanced Raman spectroscopy using a polymer-coated substrate , 1995 .

[274]  R. Lal,et al.  A biosensor array based on polyaniline. , 1996, Analytical chemistry.

[275]  B. Sellergren,et al.  Molecularly Imprinted Polymers via High‐Throughput and Combinatorial Techniques , 2004 .

[276]  O. Wolfbeis,et al.  Effects of the polymer matrix on an optical nitrate sensor based on a polarity-sensitive dye , 1996 .

[277]  Shannon E. Stitzel,et al.  Cross-reactive chemical sensor arrays. , 2000, Chemical reviews.

[278]  S. G. Krivoshlykov,et al.  Rational design of a Nile Red/polymer composite film for fluorescence sensing of organophosphonate vapors using hydrogen bond acidic polymers. , 2001, Analytical chemistry.

[279]  Radislav A. Potyrailo,et al.  Analytical instrumentation infrastructure for combinatorial and high-throughput development of formulated discrete and gradient polymeric sensor materials arrays , 2005 .

[280]  Ingo Klimant,et al.  A combinatorial approach for development of materials for optical sensing of gases. , 2004, Journal of combinatorial chemistry.

[281]  A. Pardi,et al.  High-resolution molecular discrimination by RNA. , 1994, Science.

[282]  K. Mosbach,et al.  Molecularly imprinted polymers and their use in biomimetic sensors. , 2000, Chemical reviews.

[283]  Holger Schönherr,et al.  Chain Packing in Electro-Spun Poly(ethylene oxide) Visualized by Atomic Force Microscopy , 1996 .

[284]  P. Hartmann,et al.  Effects of polymer matrices on calibration functions of luminescent oxygen sensors based on porphyrin ketone complexes. , 1996, Analytical chemistry.

[285]  Päivi Jokela,et al.  Can we rationally design molecularly imprinted polymers , 2001 .

[286]  K. Weeks,et al.  Fluorogenic resolution of ligand binding by a nucleic acid aptamer. , 2003, Journal of the American Chemical Society.

[287]  Wolfgang Schuhmann,et al.  Ink‐Jet Microdispensing for the Formation of Gradients of Immobilised Enzyme Activity , 2005 .