Normal forces of magnetorheological fluids under oscillatory shear

Abstract The normal forces of magnetorheological fluids under oscillatory shear are investigated by a commercial magneto-rheometer with plate–plate geometry. At the constant strain amplitude and frequency, the normal forces almost keep a steady value with the testing time if the strain amplitude is smaller than the critical value. When a larger strain is applied, they will fluctuate periodically. Under the strain sweep mode, the relationships between normal forces and strain amplitude can be divided into three regions: linear viscoelastic region, nonlinear viscoelastic region and the viscoplastic region. Under the frequency sweep method, it is found that the angular frequency show little influence on the normal forces. At last, the normal forces increase with increasing of the temperature under a low magnetic field, while they decrease under a high magnetic field.

[1]  C. Rogers,et al.  Magnetorheological Fluids: Materials, Characterization, and Devices , 1996 .

[2]  Jeong-Hoi Koo,et al.  A review of the state of the art in magnetorheological fluid technologies - Part I: MR fluid and MR fluid models , 2006 .

[3]  Kum-Gil Sung,et al.  Optimal control of structural vibrations using a mixed-mode magnetorheological fluid mount , 2008 .

[4]  J. Claracq,et al.  Viscoelastic properties of magnetorheological fluids , 2004 .

[5]  D. Klingenberg,et al.  A THERMODYNAMIC APPROACH TO FIELD-INDUCED STRESSES IN ELECTRO- AND MAGNETOACTIVE COMPOSITES , 2001 .

[6]  Daniel J. Klingenberg,et al.  Electro- and magneto-rheology , 1998 .

[7]  D. Klingenberg,et al.  A continuum approach to electrorheology , 1999 .

[8]  Brian R. Mace,et al.  A tunable magneto-rheological fluid-filled beam-like vibration absorber , 2010 .

[9]  Xinglong Gong,et al.  Dimorphic magnetorheological fluid with improved rheological properties , 2011 .

[10]  R. Tanner,et al.  Shear rate dependence of the normal force of a magnetorheological suspension , 2003 .

[11]  B. Khusid,et al.  Structure, physical properties and dynamics of magnetorheological suspensions , 1986 .

[12]  Yu Tian,et al.  An experimental study on the normal stress of magnetorheological fluids , 2011 .

[13]  Ningqun Guo,et al.  Nonlinear viscoelastic properties of MR fluids under large-amplitude-oscillatory-shear , 2003 .

[14]  J. Vicente,et al.  Normal force study in concentrated carbonyl iron magnetorheological suspensions , 2002 .

[15]  Daniel J. Klingenberg,et al.  A microstructural investigation of the nonlinear response of electrorheological suspensions , 1995 .

[16]  Georges Bossis,et al.  Magnetorheology: Fluids, Structures and Rheology , 2002 .

[17]  Daniel J. Klingenberg,et al.  Magnetorheology: Applications and challenges , 2001 .

[18]  G. Bossis,et al.  Normal stresses in a shear flow of magnetorheological suspensions: Viscoelastic versus Maxwell stresses , 2010 .

[19]  D. Klingenberg,et al.  Magnetorheological fluids: a review , 2011 .

[20]  Robert M. Parkin,et al.  Vibration characteristics of MR cantilever sandwich beams: experimental study , 2009 .

[21]  H. Laun,et al.  Primary and secondary normal stress differences of a magnetorheological fluid (MRF) up to magnetic flux densities of 1 T , 2008 .

[22]  J. Vicente,et al.  Controlling friction using magnetic nanofluids , 2011 .

[23]  Subhash Rakheja,et al.  Vibration analysis of a partially treated multi-layer beam with magnetorheological fluid , 2010 .

[24]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[25]  Claus Gabriel,et al.  Reliable plate–plate MRF magnetorheometry based on validated radial magnetic flux density profile simulations , 2008 .

[26]  Daniel J. Klingenberg,et al.  Large amplitude oscillatory shear of ER suspensions , 1999 .

[27]  Weihua Li,et al.  Viscoelastic properties of MR fluids , 1999 .

[28]  Wei-Hsin Liao,et al.  Magnetorheological fluid dampers: a review of parametric modelling , 2011 .

[29]  P. Wong,et al.  Repulsive Normal Force by an Excited Magneto-Rheological Fluid Bounded by Parallel Plates in Stationary or Rotating Shear Mode , 2011 .