Engineering signaling circuits using a cell-free synthetic biology approach

Unravelling the complex organization of molecular networks inside living cells is a key topic of both systems biology and synthetic biology. Simplified model systems have been engineered and constructed under controlled cell-free conditions with the goal of mimicking biological responses of intracellular circuits. These model systems reveal key principles of molecular programs that underlie the biological function of interest. Here, we first present an overview of key studies on cell-free biochemical modules that are able to emulate higherorder dynamics. Additionally, we discuss the effect of retroactivity, a phenomenon resulting from the interconnection of an upstream module to a downstream module. Importantly, while cell-free studies on molecular networks are often performed at high reactant concentrations in a well-stirred dilute environment, the cell’s interior is an inhomogeneous crowded environment where reactions between biomolecules occur at low concentrations. We additionally discuss the stochastic nature of cellular reactions resulting from low concentrations of reactants and the effect of macromolecular crowding on biochemical reactions. Finally, we present recent work showing the versatility of programmable biochemical reaction networks in analytical and diagnostic applications. The work in this chapter has partly been published in: Hendrik W.H. van Roekelǂ, Bas J.H.M. Rosierǂ, Lenny H.H. Meijerǂ, Peter A.J. Hilbers, Albert J. Markvoort, Wilhelm T.S. Huck and Tom F.A. de Greef – Chemical Society Reviews, 2015, 44, 7465 ǂ contributed equally to this work

[1]  Daniel S. Banks,et al.  Anomalous diffusion of proteins due to molecular crowding. , 2005, Biophysical journal.

[2]  Julio O. Ortiz,et al.  The Native 3D Organization of Bacterial Polysomes , 2009, Cell.

[3]  A. van Oudenaarden,et al.  Using Gene Expression Noise to Understand Gene Regulation , 2012, Science.

[4]  G. Lahav,et al.  Encoding and Decoding Cellular Information through Signaling Dynamics , 2013, Cell.

[5]  S. Zimmerman,et al.  Macromolecular crowding increases binding of DNA polymerase to DNA: an adaptive effect. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Shawn M. Douglas,et al.  A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads , 2012, Science.

[7]  Dongsheng Liu,et al.  Regulation of an enzyme cascade reaction by a DNA machine. , 2013, Small.

[8]  Arkady B. Khodursky,et al.  Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[9]  A. Minton,et al.  How can biochemical reactions within cells differ from those in test tubes? , 2006, Journal of Cell Science.

[10]  E. Shapiro,et al.  An autonomous molecular computer for logical control of gene expression , 2004, Nature.

[11]  J. Szostak,et al.  Progress toward synthetic cells. , 2014, Annual review of biochemistry.

[12]  Darko Stefanovic,et al.  Deoxyribozyme-based logic gates. , 2002, Journal of the American Chemical Society.

[13]  Alan Saghatelian,et al.  DNA detection and signal amplification via an engineered allosteric enzyme. , 2003, Journal of the American Chemical Society.

[14]  Samanthe M. Lyons,et al.  Loads Bias Genetic and Signaling Switches in Synthetic and Natural Systems , 2014, PLoS Comput. Biol..

[15]  R. Metzler,et al.  A solution to the subdiffusion-efficiency paradox: Inactive states enhance reaction efficiency at subdiffusion conditions in living cells , 2012, 1202.6505.

[16]  W. Bentley,et al.  Engineered biological nanofactories trigger quorum sensing response in targeted bacteria. , 2010, Nature nanotechnology.

[17]  T. Hwa,et al.  Molecular crowding limits translation and cell growth , 2013, Proceedings of the National Academy of Sciences.

[18]  Wilson W Wong,et al.  Single-cell zeroth-order protein degradation enhances the robustness of synthetic oscillator , 2007, Molecular systems biology.

[19]  R. Reisfeld,et al.  Monoclonal antibodies in cancer immunotherapy. , 1992, Clinics in laboratory medicine.

[20]  Travis A. Meyer,et al.  Regulation at a distance of biomolecular interactions using a DNA origami nanoactuator , 2016, Nature Communications.

[21]  E. Winfree,et al.  Synthetic in vitro transcriptional oscillators , 2011, Molecular systems biology.

[22]  Boris N. Kholodenko,et al.  Switches, Excitable Responses and Oscillations in the Ring1B/Bmi1 Ubiquitination System , 2011, PLoS Comput. Biol..

[23]  Katherine C. Chen,et al.  Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. , 2003, Current opinion in cell biology.

[24]  Maarten Merkx,et al.  Antibody activation using DNA-based logic gates. , 2015, Angewandte Chemie.

[25]  Teruo Fujii,et al.  Predator-prey molecular ecosystems. , 2013, ACS nano.

[26]  Wendell A Lim,et al.  Design principles of regulatory networks: searching for the molecular algorithms of the cell. , 2013, Molecular cell.

[27]  Chad A Mirkin,et al.  NanoFlares for the detection, isolation, and culture of live tumor cells from human blood , 2014, Proceedings of the National Academy of Sciences.

[28]  Gürol M. Süel,et al.  An excitable gene regulatory circuit induces transient cellular differentiation , 2006, Nature.

[29]  Chad A. Mirkin,et al.  Oligonucleotide-Modified Gold Nanoparticles for Intracellular Gene Regulation , 2006, Science.

[30]  W. Lim,et al.  Mapping the functional versatility and fragility of Ras GTPase signaling circuits through in vitro network reconstitution , 2016, eLife.

[31]  David A Sivak,et al.  Transcription factor competition allows embryonic stem cells to distinguish authentic signals from noise. , 2015, Cell systems.

[32]  Onn Brandman,et al.  Feedback Loops Shape Cellular Signals in Space and Time , 2008, Science.

[33]  Ying-Ja Chen,et al.  DNA sequencing by denaturation: principle and thermodynamic simulations. , 2009, Analytical biochemistry.

[34]  H. Pei,et al.  Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. , 2011, ACS nano.

[35]  J. Raser,et al.  Noise in Gene Expression: Origins, Consequences, and Control , 2005, Science.

[36]  J. Ferrell,et al.  Ultrasensitivity in the Regulation of Cdc25C by Cdk1. , 2011, Molecular cell.

[37]  Jehoshua Bruck,et al.  Neural network computation with DNA strand displacement cascades , 2011, Nature.

[38]  Johan Paulsson,et al.  Separating intrinsic from extrinsic fluctuations in dynamic biological systems , 2011, Proceedings of the National Academy of Sciences.

[39]  Carl Prévost-Tremblay,et al.  Antibody-powered nucleic acid release using a DNA-based nanomachine , 2017, Nature Communications.

[40]  L. Mirny,et al.  How gene order is influenced by the biophysics of transcription regulation , 2007, Proceedings of the National Academy of Sciences.

[41]  Gernot Guigas,et al.  Sampling the cell with anomalous diffusion - the discovery of slowness. , 2008, Biophysical journal.

[42]  Hiroyuki Kuwahara,et al.  Beyond initiation-limited translational bursting: the effects of burst size distributions on the stability of gene expression. , 2015, Integrative biology : quantitative biosciences from nano to macro.

[43]  D. Volfson,et al.  Delay-induced stochastic oscillations in gene regulation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Nicolas E. Buchler,et al.  Nonlinear protein degradation and the function of genetic circuits. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[45]  M. Ghadiri,et al.  Design of molecular logic devices based on a programmable DNA-regulated semisynthetic enzyme. , 2007, Angewandte Chemie.

[46]  Tom F A de Greef,et al.  Programmable chemical reaction networks: emulating regulatory functions in living cells using a bottom-up approach. , 2015, Chemical Society reviews.

[47]  Hannah H. Chang,et al.  Transcriptome-wide noise controls lineage choice in mammalian progenitor cells , 2008, Nature.

[48]  P. Pradipasena,et al.  Effect of concentration on apparent viscosity of a globular protein solution , 1977 .

[49]  T. Fujii,et al.  High-resolution mapping of bifurcations in nonlinear biochemical circuits. , 2016, Nature chemistry.

[50]  E. Winfree,et al.  Construction of an in vitro bistable circuit from synthetic transcriptional switches , 2006, Molecular systems biology.

[51]  Yamuna Krishnan,et al.  Two DNA nanomachines map pH changes along intersecting endocytic pathways inside the same cell. , 2013, Nature nanotechnology.

[52]  S. Lockett,et al.  Activation of different split functionalities upon re-association of RNA-DNA hybrids , 2013, Nature nanotechnology.

[53]  Joanna Aizenberg,et al.  Chemo-Mechanically Regulated Oscillation of an Enzymatic Reaction , 2013 .

[54]  Ertugrul M. Ozbudak,et al.  Regulation of noise in the expression of a single gene , 2002, Nature Genetics.

[55]  Jessica L. Terrell,et al.  Integrating artificial with natural cells to translate chemical messages that direct E. coli behaviour , 2014, Nature Communications.

[56]  Erik Winfree,et al.  Neural Network Computation by In Vitro Transcriptional Circuits , 2004, NIPS.

[57]  A. Piruska,et al.  Enhanced transcription rates in membrane-free protocells formed by coacervation of cell lysate , 2013, Proceedings of the National Academy of Sciences.

[58]  Teruo Fujii,et al.  In vitro regulatory models for systems biology. , 2013, Biotechnology advances.

[59]  D. Richter,et al.  Coupled protein domain motion in Taq polymerase revealed by neutron spin-echo spectroscopy. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Dan Luo,et al.  Cell-Free Protein Expression under Macromolecular Crowding Conditions , 2011, PloS one.

[61]  K. Jensen,et al.  The RNA chain elongation rate in Escherichia coli depends on the growth rate , 1994, Journal of bacteriology.

[62]  C. Jacobs-Wagner,et al.  Physical Nature of the Bacterial Cytoplasm , 2014 .

[63]  Tom F A de Greef,et al.  Automated design of programmable enzyme-driven DNA circuits. , 2015, ACS synthetic biology.

[64]  P. Dennis,et al.  Modulation of Chemical Composition and Other Parameters of the Cell at Different Exponential Growth Rates , 2008, EcoSal Plus.

[65]  Cuichen Wu,et al.  A cascade reaction network mimicking the basic functional steps of adaptive immune response , 2015, Nature chemistry.

[66]  V. Shahrezaei,et al.  The stochastic nature of biochemical networks. , 2008, Current opinion in biotechnology.

[67]  V. Noireaux,et al.  An E. coli cell-free expression toolbox: application to synthetic gene circuits and artificial cells. , 2012, ACS synthetic biology.

[68]  Alexander Deiters,et al.  DNA computation in mammalian cells: microRNA logic operations. , 2013, Journal of the American Chemical Society.

[69]  O. Sliusarenko,et al.  Spatial organization of the flow of genetic information in bacteria , 2010, Nature.

[70]  Chad A Mirkin,et al.  Nano-flares for mRNA regulation and detection. , 2009, ACS nano.

[71]  Jeffrey W. Smith,et al.  Stochastic Gene Expression in a Single Cell , .

[72]  Guy S. Salvesen,et al.  SnapShot: Caspases , 2011, Cell.

[73]  Zhixin Wang,et al.  Dynamic DNA Assemblies Mediated by Binding-Induced DNA Strand Displacement , 2013, Journal of the American Chemical Society.

[74]  Markus Eriksson,et al.  Excluded volume effects in on- and off-lattice reaction-diffusion models. , 2016, IET systems biology.

[75]  G. Seelig,et al.  Enzyme-Free Nucleic Acid Logic Circuits , 2022 .

[76]  Richard A. Muscat,et al.  DNA nanotechnology from the test tube to the cell. , 2015, Nature nanotechnology.

[77]  Lenny H. H. Meijer,et al.  Macromolecular crowding creates heterogeneous environments of gene expression in picolitre droplets , 2015 .

[78]  G Gines,et al.  Microscopic agents programmed by DNA circuits. , 2017, Nature nanotechnology.

[79]  Chunhai Fan,et al.  Reconfigurable three-dimensional DNA nanostructures for the construction of intracellular logic sensors. , 2012, Angewandte Chemie.

[80]  A. Verkman,et al.  Crowding effects on diffusion in solutions and cells. , 2008, Annual review of biophysics.

[81]  Michael J. Mlodzianoski,et al.  Probing Spatial Organization of mRNA in Bacterial Cells using 3D Super-Resolution Microscopy , 2012 .

[82]  Erik Steur,et al.  Hierarchical control of enzymatic actuators using DNA-based switchable memories , 2017, Nature Communications.

[83]  Lulu Qian,et al.  Supporting Online Material Materials and Methods Figs. S1 to S6 Tables S1 to S4 References and Notes Scaling up Digital Circuit Computation with Dna Strand Displacement Cascades , 2022 .

[84]  William M Gelbart,et al.  Visualizing large RNA molecules in solution. , 2012, RNA.

[85]  N. Seeman,et al.  A Proximity-Based Programmable DNA Nanoscale Assembly Line , 2010, Nature.

[86]  P. Swain,et al.  Intrinsic and extrinsic contributions to stochasticity in gene expression , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[87]  Matti Karp,et al.  A cell-free biosensor for the detection of transcriptional inducers using firefly luciferase as a reporter. , 2004, Analytical biochemistry.

[88]  R. Zimmer,et al.  Experiment and mathematical modeling of gene expression dynamics in a cell-free system. , 2012, Integrative biology : quantitative biosciences from nano to macro.

[89]  Liuting Mo,et al.  Aptamer-integrated DNA nanostructures for biosensing, bioimaging and cancer therapy. , 2016, Chemical Society reviews.

[90]  E. Karsenti Self-organization in cell biology: a brief history , 2008, Nature Reviews Molecular Cell Biology.

[91]  Jared E. Toettcher,et al.  Stochastic Gene Expression in a Lentiviral Positive-Feedback Loop: HIV-1 Tat Fluctuations Drive Phenotypic Diversity , 2005, Cell.

[92]  D. Dubnau,et al.  Noise in Gene Expression Determines Cell Fate in Bacillus subtilis , 2007, Science.

[93]  J. Raser,et al.  Control of Stochasticity in Eukaryotic Gene Expression , 2004, Science.

[94]  Teruo Fujii,et al.  Computing with competition in biochemical networks. , 2012, Physical review letters.

[95]  Vincent Noireaux,et al.  Cell-sized mechanosensitive and biosensing compartment programmed with DNA. , 2017, Chemical communications.

[96]  Carsten Peterson,et al.  Transcriptional Dynamics of the Embryonic Stem Cell Switch , 2006, PLoS Comput. Biol..

[97]  Huan‐Xiang Zhou,et al.  Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. , 2008, Annual review of biophysics.

[98]  James J. Collins,et al.  Paper-Based Synthetic Gene Networks , 2014, Cell.

[99]  Jerome T. Mettetal,et al.  Stochastic switching as a survival strategy in fluctuating environments , 2008, Nature Genetics.

[100]  Milan N. Stojanovic,et al.  Autonomous Molecular Cascades for Evaluation of Cell Surfaces , 2013, Nature nanotechnology.

[101]  Richard M. Murray,et al.  Design of insulating devices for in vitro synthetic circuits , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[102]  Nir Friedman,et al.  Linking stochastic dynamics to population distribution: an analytical framework of gene expression. , 2006, Physical review letters.

[103]  Yannick Rondelez,et al.  Synthesis and materialization of a reaction–diffusion French flag pattern , 2017, Nature Chemistry.

[104]  P. Lichter,et al.  Experimental evidence for the influence of molecular crowding on nuclear architecture , 2007, Journal of Cell Science.

[105]  Teruo Fujii,et al.  High-throughput and long-term observation of compartmentalized biochemical oscillators. , 2015, Chemical communications.

[106]  Wendell A. Lim,et al.  Designing customized cell signalling circuits , 2010, Nature Reviews Molecular Cell Biology.

[107]  Xi Chen,et al.  Stacking nonenzymatic circuits for high signal gain , 2013, Proceedings of the National Academy of Sciences.

[108]  Jayajit Das,et al.  Digital Signaling and Hysteresis Characterize Ras Activation in Lymphoid Cells , 2009, Cell.

[109]  Hao Yan,et al.  A DNA tweezer-actuated enzyme nanoreactor , 2013, Nature Communications.

[110]  Domitilla Del Vecchio,et al.  Retroactivity controls the temporal dynamics of gene transcription. , 2013, ACS synthetic biology.

[111]  Tom F. A. de Greef,et al.  Antibody-controlled actuation of DNA-based molecular circuits , 2017, Nature Communications.

[112]  Linda R Petzold,et al.  Validity conditions for stochastic chemical kinetics in diffusion-limited systems. , 2014, The Journal of chemical physics.

[113]  Assaf Zinger,et al.  Synthetic Cells Synthesize Therapeutic Proteins inside Tumors , 2018, Advanced healthcare materials.

[114]  M. L. Simpson,et al.  Probing cell-free gene expression noise in femtoliter volumes. , 2013, ACS synthetic biology.

[115]  Richard M. Murray,et al.  Synthetic circuit for exact adaptation and fold-change detection , 2014, Nucleic acids research.

[116]  Hédi Soula,et al.  Anomalous versus slowed-down Brownian diffusion in the ligand-binding equilibrium. , 2012, Biophysical journal.

[117]  C. Mirkin,et al.  Exosome encased spherical nucleic acid gold nanoparticle conjugates as potent microRNA regulation agents. , 2014, Small.

[118]  R. Ellis,et al.  Macromolecular crowding: an important but neglected aspect of the intracellular environment. , 2001, Current opinion in structural biology.

[119]  Lenny H. H. Meijer,et al.  DMSO induces dehydration near lipid membrane surfaces. , 2015, Biophysical journal.

[120]  J. Paulsson Summing up the noise in gene networks , 2004, Nature.

[121]  Domitilla Del Vecchio,et al.  A control theoretic framework for modular analysis and design of biomolecular networks , 2013, Annu. Rev. Control..

[122]  O. Leavy Therapeutic antibodies: past, present and future , 2010, Nature Reviews Immunology.

[123]  A. Minton,et al.  The Influence of Macromolecular Crowding and Macromolecular Confinement on Biochemical Reactions in Physiological Media* , 2001, The Journal of Biological Chemistry.

[124]  Neha P Kamat,et al.  Towards an artificial cell , 2012, FEBS letters.

[125]  R. Murray,et al.  Timing molecular motion and production with a synthetic transcriptional clock , 2011, Proceedings of the National Academy of Sciences.

[126]  James E. Ferrell,et al.  Bistability in cell signaling: How to make continuous processes discontinuous, and reversible processes irreversible. , 2001, Chaos.

[127]  A. Turberfield,et al.  A DNA-fuelled molecular machine made of DNA , 2022 .

[128]  S. Zimmerman,et al.  Effects of macromolecular crowding on the association of E. coli ribosomal particles. , 1988, Nucleic acids research.

[129]  Yamuna Krishnan,et al.  A DNA nanomachine that maps spatial and temporal pH changes inside living cells. , 2009, Nature nanotechnology.

[130]  Tae J. Lee,et al.  A bistable Rb–E2F switch underlies the restriction point , 2008, Nature Cell Biology.

[131]  Teruo Fujii,et al.  Spatial waves in synthetic biochemical networks. , 2013, Journal of the American Chemical Society.

[132]  M. Kaczanowska,et al.  Ribosome Biogenesis and the Translation Process in Escherichia coli , 2007, Microbiology and Molecular Biology Reviews.

[133]  Teruo Fujii,et al.  Boosting functionality of synthetic DNA circuits with tailored deactivation , 2016, Nature Communications.

[134]  M. Thattai,et al.  Intrinsic noise in gene regulatory networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[135]  Y. Sakai,et al.  Programming an in vitro DNA oscillator using a molecular networking strategy , 2011, Molecular systems biology.

[136]  Jonathan Bath,et al.  A DNA-based molecular motor that can navigate a network of tracks. , 2012, Nature nanotechnology.

[137]  E. Winfree,et al.  Diversity in the dynamical behaviour of a compartmentalized programmable biochemical oscillator. , 2014, Nature chemistry.

[138]  R. Ellis Macromolecular crowding : obvious but underappreciated , 2022 .

[139]  D. Y. Zhang,et al.  Engineering Entropy-Driven Reactions and Networks Catalyzed by DNA , 2007, Science.

[140]  Edward S Boyden,et al.  Engineering genetic circuit interactions within and between synthetic minimal cells , 2016, Nature chemistry.

[141]  T. Kondo,et al.  Reconstitution of Circadian Oscillation of Cyanobacterial KaiC Phosphorylation in Vitro , 2005, Science.

[142]  Tetsuya Yomo,et al.  Stochasticity in gene expression in a cell-sized compartment. , 2015, ACS synthetic biology.

[143]  O Bénichou,et al.  Geometry-controlled kinetics. , 2010, Nature chemistry.

[144]  Weihong Tan,et al.  Self-assembled, aptamer-tethered DNA nanotrains for targeted transport of molecular drugs in cancer theranostics , 2013, Proceedings of the National Academy of Sciences.

[145]  Pierre Boulanger,et al.  Coarse-grained molecular simulation of diffusion and reaction kinetics in a crowded virtual cytoplasm. , 2008, Biophysical journal.

[146]  M. Elowitz,et al.  A synthetic oscillatory network of transcriptional regulators , 2000, Nature.

[147]  D. Y. Zhang,et al.  Control of DNA strand displacement kinetics using toehold exchange. , 2009, Journal of the American Chemical Society.

[148]  S. P. Fletcher,et al.  Mechanisms of autocatalysis. , 2013, Angewandte Chemie.

[149]  C. Townsend,et al.  An externally tunable bacterial band-pass filter , 2009, Proceedings of the National Academy of Sciences.

[150]  Eduardo Sontag,et al.  Modular cell biology: retroactivity and insulation , 2008, Molecular systems biology.

[151]  J. Doyle,et al.  Robust perfect adaptation in bacterial chemotaxis through integral feedback control. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[152]  Teruo Fujii,et al.  Bottom-up construction of in vitro switchable memories , 2012, Proceedings of the National Academy of Sciences.

[153]  Alexander Prokup,et al.  Interfacing synthetic DNA logic operations with protein outputs. , 2014, Angewandte Chemie.

[154]  H. Heus,et al.  Protein Synthesis in Coupled and Uncoupled Cell-Free Prokaryotic Gene Expression Systems. , 2016, ACS synthetic biology.

[155]  Georg Seelig,et al.  Computing in mammalian cells with nucleic acid strand exchange , 2015, Nature nanotechnology.

[156]  Erik Winfree,et al.  Molecular robots guided by prescriptive landscapes , 2010, Nature.

[157]  Jeroen S. van Zon,et al.  Diffusion of transcription factors can drastically enhance the noise in gene expression. , 2006, Biophysical journal.

[158]  Dongsheng Liu,et al.  Reversible regulation of protein binding affinity by a DNA machine. , 2012, Journal of the American Chemical Society.

[159]  Cuichen Wu,et al.  A logical molecular circuit for programmable and autonomous regulation of protein activity using DNA aptamer-protein interactions. , 2012, Journal of the American Chemical Society.