Concept of Functionally Graded Materials for Advanced Thermal Barrier Coating Applications

This feature article explores the concept of creating functionally graded metal-ceramic composite microstructures for thermal barrier coatings used in gas-turbine applications. From a thermomechanical perspective, this concept offers the possibility of significantly improving the life and reliability of thermal barrier coatings. However, prior research reveals that progress has been somewhat limited because of the oxidative instability exhibited by some metal-ceramic composite microstructures. The present study addresses some of the materials criteria and research issues associated with preparing chemically stable, yet mechanically durable, graded metal-ceramic microstructures for realistic application environments.

[1]  K. S. Ramesh,et al.  Modelling studies applied to functionally graded materials , 1995 .

[2]  D. Hasselman,et al.  Thermal diffusivity and conductivity of dense polycrystalline ZrO2 ceramics: a survey , 1987 .

[3]  Dinesh K. Gupta,et al.  Ceramic thermal barrier coatings for commercial gas turbine engines , 1991 .

[4]  R. Freer Bibliography Self-diffusion and impurity diffusion in oxides , 1980 .

[5]  M. Cheng,et al.  The spalling modes and degradation mechanism of ZrO2-8 wt.% Y2O3/CVD-Al2O3/Ni-22Cr-10Al-1Y thermal-barrier coatings , 1993 .

[6]  K. More,et al.  Synthesis of functionally graded metal-ceramic microstructures by chemical vapor deposition , 1995 .

[7]  Woo Y. Lee,et al.  Interaction of Low‐Expansion NZP Ceramics with Na2SO4 at 1000°C , 1996 .

[8]  Robert A. Miller,et al.  Current status of thermal barrier coatings — An overview , 1987 .

[9]  Robert A. Miller,et al.  Oxidation‐Based Model for Thermal Barrier Coating Life , 1984 .

[10]  B. H. Rabin,et al.  Functionally Gradient Materials , 1995 .

[11]  N. S. Bornstein,et al.  Reactive element-sulfur interaction and oxide scale adherence , 1985 .

[12]  W. J. Lackey,et al.  Ceramic coatings for advanced heat engines - A review and projection , 1987 .

[13]  R. Freer Self-diffusion and impurity diffusion in oxides , 1980 .

[14]  Carl E. Lowell,et al.  Failure mechanisms of thermal barrier coatings exposed to elevated temperatures , 1982 .

[15]  H. Herman,et al.  Thermal Spray Processing of FGMs , 1995 .

[16]  A. Evans,et al.  On the mechanical behavior of brittle coatings and layers , 1983 .

[17]  T. A. Cruse,et al.  Thermal Barrier Coating Life Prediction Model Development , 1988 .

[18]  W. Porter,et al.  The effects of thermal cycling on the physical and mechanical properties of [NZP] ceramics , 1994 .

[19]  D. Agrawal,et al.  Synthesis and thermal expansion behavior of Ba_1+x Zr_4P_6−2xSi_2xO_24 and Sr_1+xZr_4P_6−2xSi_2xO_24 systems , 1994 .

[20]  F. Pettit,et al.  Forming continuous alumina scales to protect superalloys , 1994 .

[21]  W. D. Kingery,et al.  Introduction to Ceramics , 1976 .

[22]  J. Smialek Effect of sulfur removal on Al2O3 scale adhesion , 1991 .

[23]  J. Demasi-marcin,et al.  Protective coatings in the gas turbine engine , 1994 .

[24]  A. Bartz,et al.  PVD TBC experience on GE aircraft engines , 1997 .

[25]  Fazil Erdogan Fracture mechanics of functionally graded materials , 1995 .