Synthesis and dissolution behaviour of CaO/SrO-containing sol–gel-derived 58S glasses

[1]  Julian R. Jones,et al.  Lithium-silicate sol–gel bioactive glass and the effect of lithium precursor on structure–property relationships , 2016, Journal of Sol-Gel Science and Technology.

[2]  E. Menaszek,et al.  Gel-derived SiO2–CaO–P2O5 bioactive glasses and glass-ceramics modified by SrO addition , 2016 .

[3]  F. Moztarzadeh,et al.  Influence of strontium on the structure and biological properties of sol–gel-derived mesoporous bioactive glass (MBG) powder , 2016, Journal of Sol-Gel Science and Technology.

[4]  Molly M. Stevens,et al.  Sparse feature selection methods identify unexpected global cellular response to strontium-containing materials , 2015, Proceedings of the National Academy of Sciences.

[5]  Chikara Ohtsuki,et al.  A unified in vitro evaluation for apatite-forming ability of bioactive glasses and their variants , 2015, Journal of Materials Science: Materials in Medicine.

[6]  Chengtie Wu,et al.  Strontium-incorporated mesoporous bioactive glass scaffolds stimulating in vitro proliferation and differentiation of bone marrow stromal cells and in vivo regeneration of osteoporotic bone defects. , 2013, Journal of materials chemistry. B.

[7]  J. Chang,et al.  Bioactive silicate materials stimulate angiogenesis in fibroblast and endothelial cell co-culture system through paracrine effect. , 2013, Acta biomaterialia.

[8]  M. Vallet‐Regí,et al.  Design of in vitro bioactive hybrid materials from the first generation of amine dendrimers as nanobuilding blocks. , 2013, Chemistry.

[9]  A. Boccaccini,et al.  Therapeutic inorganic ions in bioactive glasses to enhance bone formation and beyond. , 2013, Biomaterials science.

[10]  Yinghong Zhou,et al.  Strontium-containing mesoporous bioactive glass scaffolds with improved osteogenic/cementogenic differentiation of periodontal ligament cells for periodontal tissue engineering. , 2012, Acta biomaterialia.

[11]  Jincheng Du,et al.  87Sr solid-state NMR as a structurally sensitive tool for the investigation of materials: antiosteoporotic pharmaceuticals and bioactive glasses. , 2012, Journal of the American Chemical Society.

[12]  Julian R. Jones,et al.  Influence of strontium for calcium substitution in bioactive glasses on degradation, ion release and apatite formation , 2012, Journal of The Royal Society Interface.

[13]  M. Mozafari,et al.  Sol–gel synthesis and characterization of unexpected rod-like crystal fibers based on SiO2–(1-x)CaO–xSrO–P2O5 dried-gel , 2012 .

[14]  S. Hesaraki,et al.  Structural discrepancies and in vitro nanoapatite formation ability of sol–gel derived glasses doped with different bone stimulator ions , 2011 .

[15]  Yufang Zhu,et al.  Composition–structure–property relationships of the CaO–MxOy–SiO2–P2O5 (M = Zr, Mg, Sr) mesoporous bioactive glass (MBG) scaffolds , 2011 .

[16]  Aldo R Boccaccini,et al.  A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. , 2011, Biomaterials.

[17]  A. Berdal,et al.  Effects of strontium-doped bioactive glass on the differentiation of cultured osteogenic cells. , 2011, European cells & materials.

[18]  M. Mozafari,et al.  Development of macroporous nanocomposite scaffolds of gelatin/bioactive glass prepared through layer solvent casting combined with lamination technique for bone tissue engineering , 2010 .

[19]  S. Hesaraki,et al.  The effect of Sr concentration on bioactivity and biocompatibility of sol-gel derived glasses based on CaO-SrO-SiO2-P2O5 quaternary system , 2010 .

[20]  P. Marie The calcium-sensing receptor in bone cells: a potential therapeutic target in osteoporosis. , 2010, Bone.

[21]  Xia Li,et al.  The vacuolar ATPase in bone cells: a potential therapeutic target in osteoporosis , 2010, Molecular Biology Reports.

[22]  M. Alizadeh,et al.  Physico-chemical and in vitro biological evaluation of strontium/calcium silicophosphate glass , 2010, Journal of materials science. Materials in medicine.

[23]  E. Wagner,et al.  Phosphate‐Dependent Regulation of MGP in Osteoblasts: Role of ERK1/2 and Fra‐1 , 2009, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[24]  A. Góes,et al.  Effects of extracellular calcium concentration on the glutamate release by bioactive glass (BG60S) preincubated osteoblasts , 2009, Biomedical materials.

[25]  C. Ohtsuki,et al.  Fabrication of spherical CaO–SrO–ZnO–SiO2 particles by sol–gel processing , 2009, Journal of materials science. Materials in medicine.

[26]  D. Neumark,et al.  Infrared spectroscopy of the microhydrated nitrate ions NO(3)(-)(H2O)(1-6). , 2009, The journal of physical chemistry. A.

[27]  J. Nedelec,et al.  New strontium-based bioactive glasses: physicochemical reactivity and delivering capability of biologically active dissolution products , 2009 .

[28]  P. González,et al.  Structural study of sol–gel silicate glasses by IR and Raman spectroscopies , 2009 .

[29]  Julian R. Jones,et al.  Nanostructure evolution and calcium distribution in sol-gel derived bioactive glass , 2009 .

[30]  T. Gumuła,et al.  Nucleation of hydroxyapatite layer on wollastonite material surface: FTIR studies , 2008 .

[31]  J. Nedelec,et al.  Strontium-Delivering Glasses with Enhanced Bioactivity: A New Biomaterial for Antiosteoporotic Applications? , 2008 .

[32]  P. Moretto,et al.  Micro-PIXE-RBS methods highlighting the influence of phosphorus on the in vitro bioactivity of sol-gel derived glass particles in the SiO2-CaO-P2O5 system , 2008 .

[33]  E. Brown,et al.  The calcium-sensing receptor (CaR) is involved in strontium ranelate-induced osteoblast proliferation. , 2007, Biochemical pharmacology.

[34]  P. Marie Strontium ranelate: New insights into its dual mode of action , 2007 .

[35]  D. Magne,et al.  Phosphate stimulates matrix Gla protein expression in chondrocytes through the extracellular signal regulated kinase signaling pathway. , 2007, Endocrinology.

[36]  Tadashi Kokubo,et al.  How useful is SBF in predicting in vivo bone bioactivity? , 2006, Biomaterials.

[37]  M. Vallet‐Regí,et al.  The influence of the phosphorus content on the bioactivity of sol-gel glass ceramics. , 2005, Biomaterials.

[38]  P. Marie,et al.  Normal matrix mineralization induced by strontium ranelate in MC3T3-E1 osteogenic cells. , 2004, Metabolism: clinical and experimental.

[39]  N. Takahashi,et al.  S 12911‐2 Inhibits Osteoclastic Bone Resorption In Vitro , 2003, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[40]  C. Orvig,et al.  Boon and Bane of Metal Ions in Medicine , 2003, Science.

[41]  L. Hench,et al.  Mesoporous calcium silicate glasses. I. Synthesis , 2003 .

[42]  R. P. Thompson,et al.  Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. , 2003, Bone.

[43]  L L Hench,et al.  In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses. , 2002, Journal of biomedical materials research.

[44]  C. Rey,et al.  Mechanisms of Action and Therapeutic Potential of Strontium in Bone , 2001, Calcified Tissue International.

[45]  L. T. Zhuravlev The surface chemistry of amorphous silica. Zhuravlev model , 2000 .

[46]  L L Hench,et al.  An investigation of bioactive glass powders by sol-gel processing. , 1991, Journal of applied biomaterials : an official journal of the Society for Biomaterials.

[47]  T Kitsugi,et al.  Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. , 1990, Journal of Biomedical Materials Research.

[48]  C. Brinker,et al.  Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing , 1990 .

[49]  M. Yamane,et al.  Low temperature synthesis of non-crystalline solids of the system SrO-SiO2 , 1981 .

[50]  L. Canham,et al.  Silicon: the evolution of its use in biomaterials. , 2015, Acta biomaterialia.

[51]  E. Björn,et al.  Soluble silica inhibits osteoclast formation and bone resorption in vitro. , 2014, Acta biomaterialia.

[52]  Julian R Jones,et al.  Review of bioactive glass: from Hench to hybrids. , 2013, Acta biomaterialia.

[53]  L. Hench,et al.  Characterization of melt-derived 45S5 and sol-gel-derived 58S bioactive glasses. , 2001, Journal of biomedical materials research.

[54]  G. Walrafen,et al.  Raman and Infrared Spectral Studies of Aqueous Calcium Nitrate Solutions , 1967 .