Dini derivative and a characterization for Lipschitz and convex functions on Riemannian manifolds
暂无分享,去创建一个
[1] I. Holopainen. Riemannian Geometry , 1927, Nature.
[2] R. Poliquin,et al. Subgradient monotonicity and convex functions , 1990 .
[3] Lionel Thibault,et al. Characterization of lower semicontinuous convex functions , 1992 .
[4] J. Hiriart-Urruty,et al. Convex analysis and minimization algorithms , 1993 .
[5] F. Clarke,et al. Subgradient Criteria for Monotonicity, The Lipschitz Condition, and Convexity , 1993, Canadian Journal of Mathematics.
[6] S. Swaminathan. A characterization of convex functions , 1993 .
[7] C. Udriste,et al. Convex Functions and Optimization Methods on Riemannian Manifolds , 1994 .
[8] Jürgen Jost,et al. Convex functionals and generalized harmonic maps into spaces of non positive curvature , 1995 .
[9] Peter R. Wolenski,et al. Proximal Analysis and Minimization Principles , 1995 .
[10] Tamás Rapcsák,et al. Smooth Nonlinear Optimization in Rn , 1997 .
[11] Yu. S. Ledyaev,et al. Nonsmooth analysis and control theory , 1998 .
[12] S. Yau. Mathematics and its applications , 2002 .
[13] J. Ferrera,et al. Nonsmooth analysis and Hamilton–Jacobi equations on Riemannian manifolds , 2003, math/0305427.
[14] Techniques for Nonsmooth Analysis on Smooth Manifolds I: Local Problems , 2004 .
[15] Self-concordant functions for optimization on smooth manifolds , 2007, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).
[16] Techniques for Nonsmooth Analysis on Smooth Manifolds II: Deformations and Flows , 2004 .
[17] Jérôme Malick,et al. Newton methods for nonsmooth convex minimization: connections among -Lagrangian, Riemannian Newton and SQP methods , 2005, Math. Program..
[18] Juan Ferrera,et al. Proximal Calculus on Riemannian Manifolds , 2005 .
[19] O. P. Ferreira. Proximal subgradient and a characterization of Lipschitz function on Riemannian manifolds , 2006 .
[20] Yu. S. Ledyaev,et al. Nonsmooth analysis on smooth manifolds , 2007 .