Investigation of Catalytic Effects and Compositional Variations in Desorption Characteristics of LiNH2-nanoMgH2

LiNH2 and a pre-processed nanoMgH2 with 1:1 and 2:1 molar ratios were mechano-chemically milled in a high-energy planetary ball mill under inert atmosphere, and at room temperature and atmospheric pressure. Based on the thermogravimetric analysis (TGA) experiments, 2LiNH2-nanoMgH2 demonstrated superior desorption characteristics when compared to the LiNH2-nanoMgH2. The TGA studies also revealed that doping 2LiNH2-nanoMgH2 base material with 2 wt. % nanoNi catalyst enhances the sorption kinetics at lower temperatures. Additional investigation of different catalysts showed improved reaction kinetics (weight percentage of H2 released per minute) of the order TiF3 > nanoNi > nanoTi > nanoCo > nanoFe > multiwall carbon nanotube (MWCNT), and reduction in the on-set decomposition temperatures of the order nanoCo > TiF3 > nanoTi > nanoFe > nanoNi > MWCNT for the base material 2LiNH2-nanoMgH2. Pristine and catalyst-doped 2LiNH2-nanoMgH2 samples were further probed by X-ray diffraction, Fourier transform infrared spectroscopy, transmission and scanning electron microscopies, thermal programmed desorption and pressure-composition-temperature measurements to better understand the improved performance of the catalyst-doped samples, and the results are discussed.

[1]  F. W. Dafert,et al.  Über einige neue Verbindungen von Stickstoff und Wasserstoff mit Lithium , 1910 .

[2]  O. Ruff,et al.  Über das Lithium‐imid und einige Bemerkungen zu der Arbeit von Dafert und Miklauz: “Über einige neue Verbindungen von Stickstoff und Wasserstoff mit Lithium” , 1911 .

[3]  B. Bogdanovic,et al.  Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials , 1997 .

[4]  A. Załuska,et al.  Structure, catalysis and atomic reactions on the nano-scale: a systematic approach to metal hydrides for hydrogen storage , 2001 .

[5]  K. L. Tan,et al.  Interaction of hydrogen with metal nitrides and imides , 2002, Nature.

[6]  E. Ruckenstein,et al.  Ultrafast Reaction between LiH and NH3 during H2 Storage in Li3N , 2003 .

[7]  H. Fujii,et al.  Lithium nitride for reversible hydrogen storage , 2004 .

[8]  S. Hino,et al.  New Metal−N−H System Composed of Mg(NH2)2 and LiH for Hydrogen Storage , 2004 .

[9]  Weifang Luo,et al.  (LiNH2-MgH2): a viable hydrogen storage system , 2004 .

[10]  Jianjiang Hu,et al.  Ternary Imides for Hydrogen Storage , 2004 .

[11]  S. Orimo,et al.  Destabilization of Li-based complex hydrides , 2004 .

[12]  Maximilian Fichtner,et al.  Effect of Ti catalyst with different chemical form on Li–N–H hydrogen storage properties , 2005 .

[13]  Ping-Ou Chen,et al.  Thermodynamic and kinetic investigations of the hydrogen storage in the Li–Mg–N–H system , 2005 .

[14]  F. Pinkerton Decomposition kinetics of lithium amide for hydrogen storage materials , 2005 .

[15]  K. Miwa,et al.  Reversible hydrogen-storage functions for mixtures of Li3N and Mg3N2 , 2005 .

[16]  E. Ronnebro,et al.  Towards a viable hydrogen storage system for transportation application , 2005 .

[17]  S. Hino,et al.  Desorption behaviours from metal–N–H systems synthesized by ball milling , 2005 .

[18]  L. Shaw,et al.  Enhancement of lithium amide to lithium imide transition via mechanical activation. , 2006, The journal of physical chemistry. B.

[19]  H. Fujii,et al.  Hydrogen storage properties of Li-Mg-N-H systems with different ratios of LiH/Mg(NH2)2. , 2006, The journal of physical chemistry. B.

[20]  S. Hino,et al.  Synthesis and decomposition reactions of metal amides in metal–N–H hydrogen storage system , 2006 .

[21]  Guotao Wu,et al.  Investigations on hydrogen storage over Li–Mg–N–H complex—the effect of compositional changes , 2006 .

[22]  Hui‐Ming Cheng,et al.  Structure and hydrogen storage property of ball-milled LiNH2/MgH2 mixture , 2006 .

[23]  S. Sickafoose,et al.  Thermodynamic and structural characterization of the Mg–Li–N–H hydrogen storage system , 2006 .

[24]  N. Ohba,et al.  Hydrogen storage of metal nitrides by a mechanochemical reaction , 2006 .

[25]  Ping Chen,et al.  Mechanistic investigations on the heterogeneous solid-state reaction of magnesium amides and lithium hydrides. , 2006, The journal of physical chemistry. B.

[26]  Leon L. Shaw,et al.  Evaluation of the hydrogen storage behavior of a LiNH2 + MgH2 system with 1:1 ratio , 2007 .

[27]  S. Hino,et al.  Hydrogen desorption/absorption properties of Li-Ca-N-H system , 2007 .

[28]  M. Fichtner,et al.  Reaction steps in the Li–Mg–N–H hydrogen storage system , 2007 .

[29]  Kondo‐François Aguey‐Zinsou,et al.  Desorption characteristics of mechanically and chemically modified LiNH2 and (LiNH2+ LiH) , 2007 .

[30]  Weifang Luo,et al.  Characterization of NH3 formation in desorption of Li–Mg–N–H storage system , 2007 .

[31]  Chang Liu,et al.  Improved hydrogen storage performance of Li–Mg–N–H materials by optimizing composition and adding single-walled carbon nanotubes , 2007 .

[32]  J. Tarascon,et al.  Investigation of the processes for reversible hydrogen storage in the Li–Mg–N–H system , 2007 .

[33]  M. Clift,et al.  Li–Mg–N–H: Recent investigations and development , 2007 .

[34]  C. Wolverton,et al.  Activation of hydrogen storage materials in the Li–Mg–N–H system: Effect on storage properties , 2007 .

[35]  A. Züttel,et al.  Complex hydrides for hydrogen storage. , 2007, Chemical reviews.

[36]  T. Kiyobayashi,et al.  Simultaneous determination of ammonia emission and hydrogen capacity variation during the cyclic testing for LiNH2-LiH hydrogen storage system , 2008 .

[37]  L. Shaw,et al.  Effects of mechanical activation on dehydrogenation of the lithium amide and lithium hydride system , 2008 .

[38]  L. Shaw,et al.  Comparative studies of reaction rates of NH3 with MgH2 and LiH , 2008 .

[39]  S. Russo,et al.  A study of the LiNH2–MgH2 system for solid state hydrogen storage , 2008 .

[40]  T. Yadav,et al.  Effects of mechanical milling on desorption kinetics and phase transformation of LiNH2/MgH2 mixture , 2008 .

[41]  L. Shaw,et al.  Comparisons between MgH2-and LiH-containing systems for hydrogen storage applications , 2008 .

[42]  Lei Xie,et al.  Improving Hydrogen Sorption Kinetics of the Mg(NH2)2−LiH System by the Tuning Particle Size of the Amide , 2009 .

[43]  Lai-Peng Ma,et al.  Catalytically enhanced dehydrogenation of Li–Mg–N–H hydrogen storage material by transition metal nitrides , 2009 .

[44]  E. Stefanakos,et al.  Destabilization of LiAlH4 by nanocrystalline MgH2 , 2009 .

[45]  R. Ahuja,et al.  Potassium-modified Mg(NH2)2/2 LiH system for hydrogen storage. , 2009, Angewandte Chemie.

[46]  K. Luo,et al.  Size-dependent kinetic enhancement in hydrogen absorption and desorption of the Li-Mg-N-H system. , 2009, Journal of the American Chemical Society.

[47]  E. Stefanakos,et al.  Processing analysis of the ternary LiNH2―MgH2―LiBH4 system for hydrogen storage , 2009 .

[48]  Shumao Wang,et al.  The desorption kinetics of the Mg(NH2)2 + LiH mixture , 2009 .

[49]  Z. Yang,et al.  Low temperature milling of the LiNH2 + LiH hydrogen storage system , 2009 .

[50]  L. Shaw,et al.  Synthesis and hydriding properties of Li2Mg(NH)2 , 2010 .

[51]  M. Polański,et al.  The effects of ball milling and molar ratio of LiH on the hydrogen storage properties of nanocrystalline lithium amide and lithium hydride (LiNH2 + LiH) system , 2010 .

[52]  Zhigang Zak Fang,et al.  Effect of milling intensity on the formation of LiMgN from the dehydrogenation of LiNH2–MgH2 (1:1) mixture , 2010 .

[53]  Prakash C. Sharma,et al.  Effects of nano additives on hydrogen storage behavior of the multinary complex hydride LiBH4/LiNH2/MgH2 , 2010 .

[54]  M. Polański,et al.  A Review of Recent Advances on the Effects of Microstructural Refinement and Nano-Catalytic Additives on the Hydrogen Storage Properties of Metal and Complex Hydrides , 2010 .

[55]  H. Chu,et al.  Hydrogen storage properties of Li–Ca–N–H system with different molar ratios of LiNH2/CaH2 , 2010 .

[56]  A. Miotello,et al.  Atoms and nanoparticles of transition metals as catalysts for hydrogen desorption from magnesium hydride , 2011 .

[57]  M. Fichtner,et al.  Hydrogen Release and Structural Transformations in LiNH2-MgH2 Systems , 2011 .