Electrochemical sensors based on carbon nanomaterials for acetaminophen detection: A review.

This study describes the advancements made over the last five years in the development of electrochemical sensors and biosensors for acetaminophen detection. This study reviews the different configurations based on unmodified and chemically modified carbon nanotubes and graphene. The influence of various modifiers on the two types of materials is presented along with their role on the enhancement of the selectivity and sensitivity of (bio)sensors. The review is focused on a comparative description of the applications of carbon-based nanomaterials towards acetaminophen detection and presents the results in a critical manner.

[1]  Shuo Chen,et al.  Layer-by-layer assembly of all carbon nanotube ultrathin films for electrochemical applications. , 2009, Journal of the American Chemical Society.

[2]  S. Surana,et al.  Simultaneous Determination of Paracetamol and Piroxicam in Tablets by Thin Layer Chromatography Combined with Densitometry , 2008 .

[3]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[4]  Rajendra N. Goyal,et al.  Voltammetric biosensors for the determination of paracetamol at carbon nanotube modified pyrolytic graphite electrode , 2010 .

[5]  R. B. Walker,et al.  The determination of acetaminophen using a carbon nanotube:graphite-based electrode , 2010 .

[6]  A. Afkhami,et al.  Preparation of NiFe₂O₄/graphene nanocomposite and its application as a modifier for the fabrication of an electrochemical sensor for the simultaneous determination of tramadol and acetaminophen. , 2014, Analytica chimica acta.

[7]  Dennis Longley,et al.  y z , 2022 .

[8]  B. Habibi,et al.  A modified single-walled carbon nanotubes/carbon-ceramic electrode for simultaneous voltammetric determination of paracetamol and caffeine , 2014, Journal of the Iranian Chemical Society.

[9]  Feng Yan,et al.  The improvement of glucose bioelectrocatalytic properties of platinum electrodes modified with electrospun TiO2 nanofibers. , 2010, Biosensors & bioelectronics.

[10]  S. Haider,et al.  Simultaneous electrochemical determination of dopamine and acetaminophen using multiwall carbon nanotubes modified glassy carbon electrode , 2010 .

[11]  M. Baghayeri,et al.  Fabrication of a nanostructured luteolin biosensor for simultaneous determination of levodopa in the presence of acetaminophen and tyramine: Application to the analysis of some real samples , 2013 .

[12]  Richard G Compton,et al.  Sensitive adsorptive stripping voltammetric determination of paracetamol at multiwalled carbon nanotube modified basal plane pyrolytic graphite electrode. , 2008, Analytica chimica acta.

[13]  Shengshui Hu,et al.  Carbon Nanotube-Based Electrochemical Sensors: Principles and Applications in Biomedical Systems , 2009, J. Sensors.

[14]  P. Jankovics,et al.  Determination of paracetamol and its main impurity 4-aminophenol in analgesic preparations by micellar electrokinetic chromatography. , 2008, Journal of pharmaceutical and biomedical analysis.

[15]  G. Rivas,et al.  Dispersion of multi-wall carbon nanotubes in polyhistidine: characterization and analytical applications. , 2012, Analytica chimica acta.

[16]  Ke-Jing Huang,et al.  Electrochemical determination of acetaminophen based on TiO2–graphene/poly(methyl red) composite film modified electrode , 2012 .

[17]  V. Castaño,et al.  Covalently Bonded Chitosan on Graphene Oxide via Redox Reaction , 2013, Materials.

[18]  Xiaochun Gao,et al.  Electrochemical behavior and voltammetric determination of acetaminophen based on glassy carbon electrodes modified with poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite films. , 2014, Materials science & engineering. C, Materials for biological applications.

[19]  Yuyan Shao,et al.  Graphene Based Electrochemical Sensors and Biosensors: A Review , 2010 .

[20]  Y. Tsai,et al.  Sensitive electrochemical determination of acetaminophen in pharmaceutical formulations at multiwalled carbon nanotube-alumina-coated silica nanocomposite modified electrode , 2011 .

[21]  Hsuan‐Jung Huang,et al.  Chemiluminescence detection of paracetamol by a luminol-permanganate based reaction , 2001 .

[22]  N. Wilson,et al.  Functionalizing Single-Walled Carbon Nanotube Networks: Effect on Electrical and Electrochemical Properties , 2007 .

[23]  Heeyeop Chae,et al.  A graphene sheet exfoliated with microwave irradiation and interlinked by carbon nanotubes for high-performance transparent flexible electrodes , 2010, Nanotechnology.

[24]  C. Brett,et al.  A new self-assembled layer-by-layer glucose biosensor based on chitosan biopolymer entrapped enzyme with nitrogen doped graphene. , 2014, Bioelectrochemistry.

[25]  Jun Liu,et al.  A graphene-based electrochemical sensor for sensitive detection of paracetamol. , 2010, Talanta.

[26]  A. Soldatkin,et al.  Application of amperometric biosensors for analysis of ethanol, glucose, and lactate in wine. , 2009, Journal of agricultural and food chemistry.

[27]  Martin Pumera,et al.  Carbon nanotube-epoxy composites for electrochemical sensing , 2006 .

[28]  G. Rivas,et al.  Electrochemical determination of ascorbic acid and paracetamol in pharmaceutical formulations using a glassy carbon electrode modified with multi-wall carbon nanotubes dispersed in polyhistidine , 2012 .

[29]  Hasan Bagheri,et al.  Facile simultaneous electrochemical determination of codeine and acetaminophen in pharmaceutical samples and biological fluids by graphene–CoFe2O4 nancomposite modified carbon paste electrode , 2014 .

[30]  Sirajuddin,et al.  Simpler spectrophotometric assay of paracetamol in tablets and urine samples. , 2007, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[31]  S. Griveau,et al.  Horseradish Peroxidase Nanopatterned Electrodes by Click Chemistry: Application to the Electrochemical Detection of Paracetamol , 2013 .

[32]  A. Merkoçi,et al.  Nanomaterials based biosensors for food analysis applications , 2011 .

[33]  Barry L. Farmer,et al.  Swelling and electroresponsive characteristics of gelatin immobilized onto multi-walled carbon nanotubes , 2007 .

[34]  M. Deng,et al.  High-sensitivity paracetamol sensor based on Pd/graphene oxide nanocomposite as an enhanced electrochemical sensing platform. , 2014, Biosensors & bioelectronics.

[35]  M. El-Kommos,et al.  SELECTIVE REVERSED PHASE HIGH PERFORMANCE LIQUID CHROMATOGRAPHY FOR THE SIMULTANEOUS DETERMINATION OF SOME PHARMACEUTICAL BINARY MIXTURES CONTAINING NSAIDS , 2012 .

[36]  Yuehe Lin,et al.  Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes , 2002 .

[37]  Joseph Wang,et al.  Electrochemical biosensors: towards point-of-care cancer diagnostics. , 2006, Biosensors & bioelectronics.

[38]  Cecilia Cristea,et al.  Carbon Based Electrodes Modified with Horseradish Peroxidase Immobilized in Conducting Polymers for Acetaminophen Analysis , 2013, Sensors.

[39]  W. Kang,et al.  Review on carbon-derived, solid-state, micro and nano sensors for electrochemical sensing applications , 2009 .

[40]  Yan Liu,et al.  Layer-by-layer assembly of chemical reduced graphene and carbon nanotubes for sensitive electrochemical immunoassay. , 2012, Biosensors & bioelectronics.

[41]  G. Seong,et al.  Determination of acetaminophen by electrochemical co-deposition of glutamic acid and gold nanoparticles , 2012 .

[42]  A. Afkhami,et al.  Second-order advantage applied to simultaneous spectrofluorimetric determination of paracetamol and mefenamic acid in urine samples. , 2009, Analytica chimica acta.

[43]  J. Tuček Carbon Nanostructures , 2015 .

[44]  Itamar Willner,et al.  Biomolecule-functionalized carbon nanotubes: applications in nanobioelectronics. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[45]  G. Murtaza,et al.  Development of a UV-spectrophotometric method for the simultaneous determination of aspirin and paracetamol in tablets , 2011 .

[46]  S. F. D’souza,et al.  Electrochemical detection of acetaminophen on the functionalized MWCNTs modified electrode using layer-by-layer technique , 2011 .

[47]  Malcolm L. H. Green,et al.  The influence of edge-plane defects and oxygen-containing surface groups on the voltammetry of acid-treated, annealed and “super-annealed” multiwalled carbon nanotubes , 2008 .

[48]  B. Reis,et al.  Flow-injection spectrophotometric determination of paracetamol in tablets and oral solutions. , 2003, Journal of pharmaceutical and biomedical analysis.

[49]  J. Raoof,et al.  A high sensitive voltammetric sensor for qualitative and quantitative determination of phenobarbital as an antiepileptic drug in presence of acetaminophen. , 2012, Colloids and surfaces. B, Biointerfaces.

[50]  J. Esteve-Romero,et al.  Optimization of a capillary zone electrophoresis method by using a central composite factorial design for the determination of codeine and paracetamol in pharmaceuticals. , 2006, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[51]  Yang Fan,et al.  Graphene–polyaniline composite film modified electrode for voltammetric determination of 4-aminophenol , 2011 .

[52]  R. Hosseinzadeh,et al.  Ethynylferrocene–NiO/MWCNT nanocomposite modified carbon paste electrode as a novel voltammetric sensor for simultaneous determination of glutathione and acetaminophen , 2013 .

[53]  J. Burgot,et al.  Determination of acetaminophen by thermometric titrimetry , 1997 .

[54]  Xiaoping Wang,et al.  One-step electrodeposition of graphene loaded nickel oxides nanoparticles for acetaminophen detection. , 2014, Biosensors & bioelectronics.

[55]  Hassan Karimi-Maleh,et al.  Simultaneous determination of N-acetylcysteine and acetaminophen by voltammetric method using N-(3,4-dihydroxyphenethyl)-3,5-dinitrobenzamide modified multiwall carbon nanotubes paste electrode , 2011 .

[56]  G. Rivas,et al.  Dispersion of multi-wall carbon nanotubes in polyethylenimine: A new alternative for preparing electrochemical sensors , 2007 .

[57]  S. Griveau,et al.  Electrografted nanostructured platforms for click chemistry , 2012 .

[58]  Chung-Lung Chen,et al.  Reversible transformation of hydrophobicity and hydrophilicity of aligned carbon nanotube arrays and buckypapers by dry processes , 2010 .

[59]  Carlos D. Garcia,et al.  Optical properties of single-wall carbon nanotube films deposited on Si/SiO2 wafers , 2010 .

[60]  Federica Valentini,et al.  Carbon nanotube purification: preparation and characterization of carbon nanotube paste electrodes. , 2003, Analytical chemistry.

[61]  Changqing Sun,et al.  Amperometric glucose biosensor based on layer-by-layer covalent attachment of AMWNTs and IO(4)(-)-oxidized GOx. , 2008, Biosensors & bioelectronics.

[62]  G. Rivas,et al.  Carbon nanotubes paste electrode , 2003 .

[63]  Xue-Long Sun,et al.  Membrane mimetic surface functionalization of nanoparticles: methods and applications. , 2013, Advances in colloid and interface science.

[64]  N. Youssef,et al.  Spectrophotometric and spectrodensitometric determination of paracetamol and drotaverine HCl in combination. , 2007, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[65]  J. Raoof,et al.  A highly sensitive electrochemical sensor for simultaneous voltammetric determination of noradrenaline, acetaminophen, xanthine and caffeine based on a flavonoid nanostructured modified glassy carbon electrode , 2014 .

[66]  Yang Fan,et al.  Electrochemical behavior and voltammetric determination of paracetamol on Nafion/TiO2-graphene modified glassy carbon electrode. , 2011, Colloids and surfaces. B, Biointerfaces.

[67]  Jijun Zhao,et al.  Optical properties and photonic devices of doped carbon nanotubes. , 2006, Analytica chimica acta.

[68]  M. Pournaghiazar,et al.  Electrochemical oxidation and nanomolar detection of acetaminophen at a carbon-ceramic electrode modified by carbon nanotubes: a comparison between multi walled and single walled carbon nanotubes , 2011 .

[69]  M. Afrasiabi,et al.  A Glassy Carbon Electrode Modified with Multiwalled Carbon Nanotube/Chitosan Composite as a New Sensor for Simultaneous Determination of Acetaminophen and Mefenamic Acid in Pharmaceutical Preparations and Biological Samples , 2010 .

[70]  Veerappan Mani,et al.  Simultaneous electrochemical determination of dopamine and paracetamol on multiwalled carbon nanotubes/graphene oxide nanocomposite-modified glassy carbon electrode. , 2013, Talanta.

[71]  Chunming Wang,et al.  Sensitive detection of acetaminophen based on Fe₃O₄ nanoparticles-coated poly(diallyldimethylammonium chloride)-functionalized graphene nanocomposite film. , 2012, Talanta.

[72]  C. Barbas,et al.  New approaches with two cyano columns to the separation of acetaminophen, phenylephrine, chlorpheniramine and related compounds. , 2005, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[73]  R. Compton,et al.  Investigating the reactive sites and the anomalously large changes in surface pKa values of chemically modified carbon nanotubes of different morphologies , 2007 .

[74]  Y. Issa,et al.  SIMULTANEOUS DETERMINATION OF PARACETAMOL, CAFFEINE, DOMPERIDONE, ERGOTAMINE TARTRATE, PROPYPHENAZONE, AND DROTAVERINE HCL BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY , 2012 .

[75]  B. Habibi,et al.  Simultaneous determination of acetaminophen and dopamine using SWCNT modified carbon–ceramic electrode by differential pulse voltammetry , 2011 .

[76]  Q. Hao,et al.  Electrochemical sensing of acetaminophen based on poly(3,4-ethylenedioxythiophene)/graphene oxide composites , 2014 .

[77]  Yancai Li,et al.  A high effect polymer-free covalent layer by layer self-assemble carboxylated MWCNTs films modified GCE for the detection of paracetamol , 2014 .

[78]  Dong Sun,et al.  Electrochemical determination of acetaminophen using a glassy carbon electrode coated with a single-wall carbon nanotube-dicetyl phosphate film , 2007 .

[79]  C. Cristea,et al.  A Novel Label-Free Immunosensor Based on Activated Graphene Oxide for Acetaminophen Detection , 2015 .

[80]  Lauro T. Kubota,et al.  Voltammetric method optimized by multi-response assays for the simultaneous measurements of uric acid and acetaminophen in urine in the presence of surfactant using MWCNT paste electrode , 2013 .

[81]  Craig E. Banks,et al.  Electrocatalysis at Graphite and Carbon Nanotube Modified Electrodes: Edge‐Plane Sites and Tube Ends Are the Reactive Sites , 2005 .

[82]  Zhennan Gu,et al.  Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes. , 2002, Analytical chemistry.

[83]  T. Belin,et al.  Characterization methods of carbon nanotubes : a review. , 2005 .

[84]  C. Brett,et al.  New electrode architectures based on poly(methylene green) and functionalized carbon nanotubes: Characterization and application to detection of acetaminophen and pyridoxine , 2015 .

[85]  Waldemar Gorski,et al.  Facilitation of NADH electro-oxidation at treated carbon nanotubes. , 2010, Analytical chemistry.

[86]  S. Patra,et al.  Development and validation of a novel RP-HPLC method for simultaneous determination of paracetamol, phenylephrine hydrochloride, caffeine, cetirizine and nimesulide in tablet formulation , 2015 .

[87]  Aysegul Kutluay,et al.  Modification of electrodes using conductive porous layers to confer selectivity for the voltammetric detection of paracetamol in the presence of ascorbic acid, dopamine and uric acid , 2013 .

[88]  L. Jing,et al.  Electrochemical behavior of acetaminophen and its detection on the PANI–MWCNTs composite modified electrode , 2007 .

[89]  G. Rivas,et al.  Carbon nanotubes for electrochemical biosensing. , 2007, Talanta.

[90]  F. Gao,et al.  Electrocatalytical oxidation and sensitive determination of acetaminophen on glassy carbon electrode modified with graphene-chitosan composite. , 2013, Materials science & engineering. C, Materials for biological applications.

[91]  Shaojun Dong,et al.  Preparation of hybrid thin film modified carbon nanotubes on glassy carbon electrode and its electrocatalysis for oxygen reduction. , 2004, Chemical communications.

[92]  P. Dargan,et al.  A modified low-cost colorimetric method for paracetamol (acetaminophen) measurement in plasma , 2010, Clinical toxicology.

[93]  J. Lagemaat,et al.  Optical Characterization of Highly Conductive Single-Wall Carbon-Nanotube Transparent Electrodes , 2007 .

[94]  S. Shahrokhian,et al.  Voltammetric Determination of Acetaminophen in the Presence of Codeine and Ascorbic Acid at Layer-by-Layer MWCNT/Hydroquinone Sulfonic Acid-Overoxidized Polypyrrole Modified Glassy Carbon Electrode , 2011 .

[95]  M. Arvand,et al.  Simultaneous voltammetric determination of tyrosine and paracetamol using a carbon nanotube-graphene nanosheet nanocomposite modified electrode in human blood serum and pharmaceuticals. , 2013, Colloids and surfaces. B, Biointerfaces.

[96]  A. Asadipour,et al.  Application of some chemometric methods in conventional and derivative spectrophotometric analysis of acetaminophen and ascorbic acid. , 2010, Drug testing and analysis.

[97]  Wensheng Yang,et al.  A high performance electrochemical sensor for acetaminophen based on single-walled carbon nanotube-graphene nanosheet hybrid films , 2012 .

[98]  S. Shahrokhian,et al.  Simultaneous voltammetric determination of ascorbic acid, acetaminophen and isoniazid using thionine immobilized multi-walled carbon nanotube modified carbon paste electrode , 2010 .

[99]  B. Habibi,et al.  Differential pulse voltammetric simultaneous determination of acetaminophen and ascorbic acid using single-walled carbon nanotube-modified carbon-ceramic electrode. , 2011, Analytical biochemistry.

[100]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[101]  C. R. Clark,et al.  Determination of paracetamol and tramadol hydrochloride in pharmaceutical mixture using HPLC and GC-MS. , 2009, Journal of chromatographic science.

[102]  Shen-ming Chen,et al.  In situ electrochemical synthesis of highly loaded zirconium nanoparticles decorated reduced graphene oxide for the selective determination of dopamine and paracetamol in presence of ascorbic acid. , 2014, Colloids and surfaces. B, Biointerfaces.

[103]  Aicheng Chen,et al.  Sensitive Detection of Acetaminophen with Graphene-Based Electrochemical Sensor , 2015 .

[104]  A. Taheri,et al.  Highly sensitive simultaneous determination of l-dopa and paracetamol using a glassy carbon electrode modified with a composite of nickel hydroxide nanoparticles/multi-walled carbon nanotubes , 2013 .

[105]  S. Machado,et al.  Sol-gel thin-film based mesoporous silica and carbon nanotubes for the determination of dopamine, uric acid and paracetamol in urine. , 2013, Talanta.

[106]  S. Cosnier,et al.  Micro- to nanostructured poly(pyrrole-nitrilotriacetic acid) films via nanosphere templates: applications to 3D enzyme attachment by affinity interactions , 2014, Analytical and Bioanalytical Chemistry.

[107]  Joseph Wang,et al.  Carbon nanotube/teflon composite electrochemical sensors and biosensors. , 2003, Analytical chemistry.

[108]  J. Bartrolí,et al.  Strategies for the optimization of carbon nanotube/polymer ratio in composite materials: Applications as voltammetric sensors , 2010 .

[109]  B. J. Venton,et al.  Review: Carbon nanotube based electrochemical sensors for biomolecules. , 2010, Analytica chimica acta.

[110]  Jian-hui Jiang,et al.  Phospholipid-coated carbon nanotubes as sensitive electrochemical labels with controlled-assembly-mediated signal transduction for magnetic separation immunoassay. , 2009, Angewandte Chemie.

[111]  José M Pingarrón,et al.  Role of carbon nanotubes in electroanalytical chemistry: a review. , 2008, Analytica chimica acta.

[112]  A. Afkhami,et al.  Simultaneous determination of tyrosine, acetaminophen and ascorbic acid using gold nanoparticles/multiwalled carbon nanotube/glassy carbon electrode by differential pulse voltammetric method , 2014 .