Enumerative tropical algebraic geometry

The paper establishes a formula for enumeration of curves of arbitrary genus in toric surfaces. It turns out that such curves can be counted by means of certain lattice paths in the Newton polygon. The formula was announced earlier in [17]. The result is established with the help of the so-called tropical algebraic geometry. This geometry allows to replace complex toric varieties with the real space Rn and holomorphic curves with certain piecewise-linear graphs there.

[1]  A. G. Kouchnirenko Polyèdres de Newton et nombres de Milnor , 1976 .

[2]  Askold Khovanskii,et al.  Newton polyhedra and toroidal varieties , 1977 .

[3]  Oleg Viro,et al.  Gluing of plane real algebraic curves and constructions of curves of degrees 6 and 7 , 1984 .

[4]  Ziv Ran,et al.  Enumerative geometry of singular plane curves , 1989 .

[5]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[6]  M. Kontsevich,et al.  Gromov-Witten classes, quantum cohomology, and enumerative geometry , 1994 .

[7]  Dinesh Manocha,et al.  SOLVING SYSTEMS OF POLYNOMIAL EQUATIONS , 2002 .

[8]  Joe Harris,et al.  Counting plane curves of any genus , 1996, alg-geom/9608025.

[9]  Mirror symmetry is T duality , 1996, hep-th/9606040.

[10]  Branes, superpotentials and superconformal fixed points , 1997, hep-th/9704170.

[11]  J. Pin Idempotency: Tropical semirings , 1998 .

[12]  Grigori Litvinov,et al.  The correspondence principle for Idempotent Calculus and some computer applications // Gunawardena , 1998 .

[13]  Joe Harris,et al.  Moduli of curves , 1998 .

[14]  Webs of (p,q) 5-branes, five dimensional field theories and grid diagrams , 1997, hep-th/9710116.

[15]  H. Hofer,et al.  Introduction to Symplectic Field Theory , 2000, math/0010059.

[16]  Mikael Passare,et al.  Laurent determinants and arrangements of hyperplane amoebas , 2000 .

[17]  Frances Kirwan,et al.  MODULI OF CURVES (Graduate Texts in Mathematics 187) , 2000 .

[18]  R. Vakil Counting curves on rational surfaces , 2000 .

[19]  G. Mikhalkin Real algebraic curves, the moment map and amoebas , 2000 .

[20]  Yan Soibelman,et al.  Homological mirror symmetry and torus fibrations , 2000 .

[21]  Grigory Mikhalkin Counting curves via lattice paths in polygons , 2002 .

[22]  Grigory Mikhalkin Decomposition into pairs-of-pants for complex algebraic hypersurfaces , 2002 .

[23]  E. Shustin,et al.  Welschinger invariant and enumeration of real plane rational curves , 2003, math/0303378.

[24]  David E. Speyer,et al.  The tropical Grassmannian , 2003, math/0304218.

[25]  Eugenii Shustin,et al.  Welschinger invariant and enumeration of real rational curves , 2003 .

[26]  B. Sturmfels,et al.  First steps in tropical geometry , 2003, math/0306366.

[27]  Jean-Yves Welschinger,et al.  Invariants of real rational symplectic 4-manifolds and lower bounds in real enumerative geometry , 2003 .

[28]  Mikael Passare,et al.  Amoebas, Monge-Ampère measures, and triangulations of the Newton polytope. , 2004 .

[29]  J. Pin Tropical Semirings , 2005 .