Temperature dependent absorption cross-sections of O2-O2 collision pairs between 340 and 630 nm and at atmospherically relevant pressure.

The collisions between two oxygen molecules give rise to O4 absorption in the Earth atmosphere. O4 absorption is relevant to atmospheric transmission and Earth's radiation budget. O4 is further used as a reference gas in Differential Optical Absorption Spectroscopy (DOAS) applications to infer properties of clouds and aerosols. The O4 absorption cross section spectrum of bands centered at 343, 360, 380, 446, 477, 532, 577 and 630 nm is investigated in dry air and oxygen as a function of temperature (203-295 K), and at 820 mbar pressure. We characterize the temperature dependent O4 line shape and provide high precision O4 absorption cross section reference spectra that are suitable for atmospheric O4 measurements. The peak absorption cross-section is found to increase at lower temperatures due to a corresponding narrowing of the spectral band width, while the integrated cross-section remains constant (within <3%, the uncertainty of our measurements). The enthalpy of formation is determined to be ΔH(250) = -0.12 ± 0.12 kJ mol(-1), which is essentially zero, and supports previous assignments of O4 as collision induced absorption (CIA). At 203 K, van der Waals complexes (O(2-dimer)) contribute less than 0.14% to the O4 absorption in air. We conclude that O(2-dimer) is not observable in the Earth atmosphere, and as a consequence the atmospheric O4 distribution is for all practical means and purposes independent of temperature, and can be predicted with an accuracy of better than 10(-3) from knowledge of the oxygen concentration profile.

[1]  B. Dix,et al.  The CU ground MAX-DOAS instrument: characterization of RMS noise limitations and first measurements near Pensacola, FL of BrO, IO, and CHOCHO , 2011 .

[2]  James B. Burkholder,et al.  Absorption measurements of oxygen between 330 and 1140 nm , 1990 .

[3]  Ulrich Platt,et al.  Correction of the oxygen interference with UV spectroscopic (DOAS) measurements of monocyclic aromatic hydrocarbons in the atmosphere , 1998 .

[4]  D. Romanini,et al.  OPO-pulsed CRDS of the visible collision induced absorption bands of oxygen at low temperature , 2002 .

[5]  E. J. Allin,et al.  Interpretation of the visible and near-infrared absorption spectra of compressed oxygen as collision-induced electronic transitions , 1969 .

[6]  J. Slusser,et al.  On Rayleigh Optical Depth Calculations , 1999 .

[7]  H. Johnston,et al.  Oxygen absorption cross sections in the herzberg continuum and between 206 and 327 K , 1984 .

[8]  B. Dix,et al.  MAX-DOAS observations from ground, ship, and research aircraft: maximizing signal-to-noise to measure 'weak' absorbers , 2009, Optical Engineering + Applications.

[9]  Y. Rudich,et al.  Broadband measurements of aerosol extinction in the ultraviolet spectral region , 2013 .

[10]  B. Bussery-Honvault,et al.  Structure and rovibrational analysis of the [O2(1Δg)v=0]2←[O2(3Σg−)v=0]2 transition of the O2 dimer , 2000 .

[11]  I. Aben,et al.  Temperature-dependent cross sections of O-2-O-2 collision-induced absorption resonances at 477 and 577 nm , 2006 .

[12]  Hendrik Fuchs,et al.  Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer , 2008 .

[13]  H. Kneser,et al.  Kombinationsbeziehungen im Absorptionsspektrum des flüssigen Sauerstoffs , 1933 .

[14]  D. G. McCoy,et al.  The pressure dependence of the Herzberg photoabsorption continuum of oxygen. , 1987 .

[15]  Albert A. Ruth,et al.  Incoherent broad-band cavity-enhanced absorption spectroscopy , 2003 .

[16]  D. R. Bates Rayleigh scattering by air , 1984 .

[17]  Klaus Pfeilsticker,et al.  Absorption of solar radiation by atmo-spheric O4 , 1997 .

[18]  W. Ubachs,et al.  Visible absorption bands of the (O2)2 collision complex at pressures below 760 Torr. , 1999, Applied optics.

[19]  L. Herman Spectre d'absorption de l'oxygène , 1939 .

[20]  Ulrich Platt,et al.  UV‐visible observations of atmospheric O4 absorptions using direct moonlight and zenith‐scattered sunlight for clear‐sky and cloudy sky conditions , 2002 .

[21]  U. Platt,et al.  Absorption of light in the atmosphere by collision pairs of oxygen (O2)2 , 1980 .

[22]  K. Pfeilsticker,et al.  First atmospheric profile measurements of UV/visible O4 absorption band intensities: Implications for the spectroscopy, and the formation enthalpy of the O2‐O2 dimer , 2001 .

[23]  Ping Wang,et al.  Retrieval of profile information from airborne multiaxis UV-visible skylight absorption measurements. , 2004, Applied optics.

[24]  A. Mckellar,et al.  Collision-Induced Vibrational and Electronic Spectra of Gaseous Oxygen at Low Temperatures , 1972 .

[25]  G. Ewing,et al.  Spectroscopic investigation of van der Waals molecules. I. The infrared and visible spectra of (O2)2 , 1973 .

[26]  Fernando Pirani,et al.  Molecular Beam Scattering of Aligned Oxygen Molecules. The Nature of the Bond in the O2−O2 Dimer , 1999 .

[27]  D. Newnham,et al.  Visible absorption cross sections and integrated absorption intensities of molecular oxygen (O2 and O4) , 1998 .

[28]  Ulrich Platt,et al.  Broadband Cavity Enhanced Differential Optical Absorption Spectroscopy (CE-DOAS) – applicability and corrections , 2008 .

[29]  V. Aquilanti,et al.  Quantum mechanics of molecular oxygen clusters: rotovibrational dimer dynamics from realistic potential energy surfacesPresented at the Second International Conference on Photodynamics, Havana, Cuba, February 10???16, 2002.Electronic supplementary information (ESI) available: energy of the dimer in , 2002 .

[30]  G. Ewing,et al.  The infrared spectrum of bound state oxygen dimers in the gas phase , 1971 .

[31]  B. Bussery-Honvault,et al.  ROTATIONALLY RESOLVED ABSORPTION SPECTRUM OF THE O2 DIMER IN THE VISIBLE RANGE , 1998 .

[32]  A. Horowitz,et al.  The role of oxygen dimer in oxygen photolysis in the Herzberg continuum: a temperature dependence study , 1989 .

[33]  V. Aquilanti,et al.  Quantum interference scattering of aligned molecules: Bonding in O-4 and role of spin coupling , 1999 .

[34]  Giel Berden,et al.  Cavity ring-down spectroscopy : techniques and applications , 2009 .

[35]  Cavity ring-down spectroscopy of transient O 2 -O 2 dimers , 2001 .

[36]  Ryan Thalman,et al.  Inherent calibration of a blue LED-CE-DOAS instrument to measure iodine oxide, glyoxal, methyl glyoxal, nitrogen dioxide, water vapour and aerosol extinction in open cavity mode , 2010 .

[37]  Johannes Orphal,et al.  Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: instrument characterization and reference data for atmospheric remote-sensing in the 230–2380 nm region , 2003 .

[38]  W. Ubachs,et al.  Direct measurement of the Rayleigh scattering cross section in various gases , 2005 .

[39]  H. Salow,et al.  Die durch Wechselwirkungskräfte bedingten Absorptionsspektra des Sauerstoffes , 1936 .

[40]  Hilke Oetjen,et al.  The CU Airborne MAX-DOAS instrument: vertical profiling of aerosol extinction and trace gases , 2013 .

[41]  A. Vandaele,et al.  Absorption cross-sections of atmospheric constituents: NO2, O2, and H2O , 1999, Environmental science and pollution research international.

[42]  John J. Orlando,et al.  The temperature dependence of collision‐induced absorption by oxygen near 6 μm , 1991 .

[43]  W. Ubachs,et al.  Cavity ring-down measurement of the O-2-O-2 collision-induced absorption resonance at 477 nm at sub-atmospheric pressures , 2003 .

[44]  G. Ewing,et al.  Collision‐Induced Absorption Spectrum of Gaseous Oxygen at Low Temperatures and Pressures. II. The Simultaneous Transitions 1Δg + 1Δg ← 3Σg− + 3Σg− and 1Δg + 1Σg+ ← 3Σg− + 3Σg− , 1969 .

[45]  Stanley C. Solomon,et al.  Absorption of solar radiation by water vapor, oxygen, and related collision pairs in the Earth's atmosphere , 1998 .