Improved sparse fourier approximation results: faster implementations and stronger guarantees

We study the problem of quickly estimating the best k-term Fourier representation for a given periodic function f: [0, 2π] → ℂ. Solving this problem requires the identification of k of the largest magnitude Fourier series coefficients of f in worst case k2 · logO(1)N time. Randomized sublinear-time Monte Carlo algorithms, which have a small probability of failing to output accurate answers for each input signal, have been developed for solving this problem (Gilbert et al. 2002, 2005). These methods were implemented as the Ann Arbor Fast Fourier Transform (AAFFT) and empirically evaluated in Iwen et al. (Commun Math Sci 5(4):981–998, 2007). In this paper we present a new implementation, called the Gopher Fast Fourier Transform (GFFT), of more recently developed sparse Fourier transform techniques (Iwen, Found Comput Math 10(3):303–338, 2010, Appl Comput Harmon Anal, 2012). Experiments indicate that GFFT is faster than AAFFT. In addition to our empirical evaluation, we also consider the existence of sublinear-time Fourier approximation methods with deterministic approximation guarantees for functions whose sequences of Fourier series coefficents are compressible. In particular, we prove the existence of sublinear-time Las Vegas Fourier Transforms which improve on the recent deterministic Fourier approximation results of Iwen (Found Comput Math 10(3):303–338, 2010, Appl Comput Harmon Anal, 2012) for Fourier compressible functions by guaranteeing accurate answers while using an asymptotically near-optimal number of function evaluations.

[1]  R. DeVore,et al.  Compressed sensing and best k-term approximation , 2008 .

[2]  M. Rudelson,et al.  Sparse reconstruction by convex relaxation: Fourier and Gaussian measurements , 2006, 2006 40th Annual Conference on Information Sciences and Systems.

[3]  Vladimir Rokhlin,et al.  Fast Fourier Transforms for Nonequispaced Data , 1993, SIAM J. Sci. Comput..

[4]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[5]  Eyal Kushilevitz,et al.  Learning decision trees using the Fourier spectrum , 1991, STOC '91.

[6]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[7]  Anna C. Gilbert,et al.  Improved time bounds for near-optimal sparse Fourier representations , 2005, SPIE Optics + Photonics.

[8]  Mark A. Iwen,et al.  Empirical evaluation of a sub-linear time sparse DFT algorithm , 2007 .

[9]  S. Mallat A wavelet tour of signal processing , 1998 .

[10]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[11]  Holger Rauhut,et al.  Random Sampling of Sparse Trigonometric Polynomials, II. Orthogonal Matching Pursuit versus Basis Pursuit , 2008, Found. Comput. Math..

[12]  Yishay Mansour,et al.  Learning Boolean Functions via the Fourier Transform , 1994 .

[13]  Deanna Needell,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.

[14]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[15]  J. Tropp,et al.  SIGNAL RECOVERY FROM PARTIAL INFORMATION VIA ORTHOGONAL MATCHING PURSUIT , 2005 .

[16]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[17]  Massimo Fornasier,et al.  Compressive Sensing and Structured Random Matrices , 2010 .

[18]  Bernard Chazelle,et al.  The discrepancy method - randomness and complexity , 2000 .

[19]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[20]  Avi Wigderson,et al.  Theory of computing: a scientific perspective , 1996, CSUR.

[21]  Deanna Needell,et al.  Signal Recovery From Incomplete and Inaccurate Measurements Via Regularized Orthogonal Matching Pursuit , 2007, IEEE Journal of Selected Topics in Signal Processing.

[22]  H. Rauhut Compressive Sensing and Structured Random Matrices , 2009 .

[23]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[24]  Deanna Needell,et al.  Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit , 2007, Found. Comput. Math..

[25]  Rong Zeng,et al.  The Design and Implementation of , 2002 .

[26]  S. Kirolos,et al.  Analog-to-Information Conversion via Random Demodulation , 2006, 2006 IEEE Dallas/CAS Workshop on Design, Applications, Integration and Software.

[27]  Yishay Mansour,et al.  Randomized Interpolation and Approximation of Sparse Polynomials , 1992, SIAM J. Comput..

[28]  Graham Cormode,et al.  Combinatorial Algorithms for Compressed Sensing , 2006 .

[29]  A.C. Gilbert,et al.  A Tutorial on Fast Fourier Sampling , 2008, IEEE Signal Processing Magazine.

[30]  Mark A. Iwen,et al.  On the Design of Deterministic Matrices for Fast Recovery of Fourier Compressible Functions , 2011, SIAM J. Matrix Anal. Appl..

[31]  Mark A. Iwen,et al.  Combinatorial Sublinear-Time Fourier Algorithms , 2010, Found. Comput. Math..

[32]  M. A. Iwen,et al.  Improved Approximation Guarantees for Sublinear-Time Fourier Algorithms , 2010, ArXiv.

[33]  Shafi Goldwasser,et al.  Proving hard-core predicates using list decoding , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[34]  S. Kirolos,et al.  Random Sampling for Analog-to-Information Conversion of Wideband Signals , 2006, 2006 IEEE Dallas/CAS Workshop on Design, Applications, Integration and Software.

[35]  Mike E. Davies,et al.  Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.

[36]  R. Vershynin,et al.  One sketch for all: fast algorithms for compressed sensing , 2007, STOC '07.

[37]  Massimo Fornasier,et al.  Theoretical Foundations and Numerical Methods for Sparse Recovery , 2010, Radon Series on Computational and Applied Mathematics.

[38]  Sudipto Guha,et al.  Near-optimal sparse fourier representations via sampling , 2002, STOC '02.

[39]  Holger Rauhut,et al.  Compressive Sensing with structured random matrices , 2012 .

[40]  Ingrid Daubechies,et al.  A Sparse Spectral Method for Homogenization Multiscale Problems , 2007, Multiscale Model. Simul..

[41]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.