Controllable hierarchical self-assembly of porphyrin-derived supra-amphiphiles

[1]  Peiyuan Gao,et al.  Dynamic and programmable morphology and size evolution via a living hierarchical self-assembly strategy , 2018, Nature Communications.

[2]  E. W. Meijer,et al.  Competing Interactions in Hierarchical Porphyrin Self-Assembly Introduce Robustness in Pathway Complexity , 2018, Journal of the American Chemical Society.

[3]  Zibin Zhang,et al.  Anion recognition with porphyrin-bottomed tetraurea receptors , 2017, Chinese Chemical Letters.

[4]  E. W. Meijer,et al.  Solvent Clathrate Driven Dynamic Stereomutation of a Supramolecular Polymer with Molecular Pockets. , 2017, Journal of the American Chemical Society.

[5]  Xi Zhang,et al.  Host-Guest Interaction between Corona[n]arene and Bisquaternary Ammonium Derivatives for Fabricating Supra-Amphiphile. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[6]  S. Thayumanavan,et al.  Programmable Nanoassemblies from Non-Assembling Homopolymers Using Ad Hoc Electrostatic Interactions. , 2017, Angewandte Chemie.

[7]  M. Schmittel,et al.  Networking Nanoswitches for ON/OFF Control of Catalysis. , 2017, Journal of the American Chemical Society.

[8]  Xi Zhang,et al.  Supra‐Amphiphiles for Functional Assemblies , 2016 .

[9]  Feihe Huang,et al.  Fabrication of a Targeted Drug Delivery System from a Pillar[5]arene‐Based Supramolecular Diblock Copolymeric Amphiphile for Effective Cancer Therapy , 2016 .

[10]  Shuping Wang,et al.  Recent advances in the template-directed synthesis of porphyrin nanorings. , 2016, Chemical communications.

[11]  M. Chhowalla Synthesis and Applications , 2016 .

[12]  E. W. Meijer,et al.  Super-resolution microscopy reveals structural diversity in molecular exchange among peptide amphiphile nanofibres , 2016, Nature Communications.

[13]  J. Sessler,et al.  A Dual-Responsive Bola-Type Supra-amphiphile Constructed from a Water-Soluble Calix[4]pyrrole and a Tetraphenylethene-Containing Pyridine Bis-N-oxide. , 2016, Journal of the American Chemical Society.

[14]  Feihe Huang,et al.  Nanoparticles with Near-Infrared Emission Enhanced by Pillararene-Based Molecular Recognition in Water. , 2016, Journal of the American Chemical Society.

[15]  Xi Zhang,et al.  The fabrication of a supra-amphiphile for dissipative self-assembly , 2015, Chemical science.

[16]  Kecheng Jie,et al.  Supramolecular Amphiphiles Based on Host‐Guest Molecular Recognition Motifs , 2015 .

[17]  Yong Chen,et al.  Photocontrolled Reversible Conversion of Nanotube and Nanoparticle Mediated by β-Cyclodextrin Dimers. , 2015, Angewandte Chemie.

[18]  J. Zuo,et al.  Charge-Transfer Supra-Amphiphiles Built by Water-Soluble Tetrathiafulvalenes and Viologen-Containing Amphiphiles: Supramolecular Nanoassemblies with Modifiable Dimensions. , 2015, Small.

[19]  Claudia Caltagirone,et al.  Applications of Supramolecular Anion Recognition. , 2015, Chemical reviews.

[20]  Klaus Müllen,et al.  Self‐Assembly of an Amphiphilic π‐Conjugated Dyad into Fibers: Ultrafast and Ultrasensitive Humidity Sensor , 2015, Advanced materials.

[21]  Guocan Yu,et al.  A dual-responsive supra-amphiphile based on a water-soluble pillar[7]arene and a naphthalene diimide-containing guest. , 2015, Chemical communications.

[22]  Kecheng Jie,et al.  Supramolecular Amphiphiles Based on Host-Guest Molecular Recognition Motifs. , 2015, Chemical reviews.

[23]  Li Zhang,et al.  Self-assembly of triangular amphiphiles into diverse nano/microstructures and release behavior of the hollow sphere. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[24]  Xi Zhang,et al.  25th Anniversary Article: Reversible and Adaptive Functional Supramolecular Materials: “Noncovalent Interaction” Matters , 2013, Advanced materials.

[25]  Yongju Kim,et al.  Development of toroidal nanostructures by self-assembly: rational designs and applications. , 2013, Accounts of chemical research.

[26]  Yanhui Shi,et al.  Hierarchical self-assembly: well-defined supramolecular nanostructures and metallohydrogels via amphiphilic discrete organoplatinum(II) metallacycles. , 2013, Journal of the American Chemical Society.

[27]  S. Stupp,et al.  Self-assembly of highly ordered peptide amphiphile metalloporphyrin arrays. , 2012, Journal of the American Chemical Society.

[28]  E. W. Meijer,et al.  Functional Supramolecular Polymers , 2012, Science.

[29]  H. Amouri,et al.  Confined nanospaces in metallocages: guest molecules, weakly encapsulated anions, and catalyst sequestration. , 2012, Chemical reviews.

[30]  Xi Zhang,et al.  Amphiphilic building blocks for self-assembly: from amphiphiles to supra-amphiphiles. , 2012, Accounts of chemical research.

[31]  H. Schönherr,et al.  Preparation of a poly-nanocage dynamer: correlating the growth of polymer strands using constitutional dynamic chemistry and heteroleptic aggregation. , 2012, Journal of the American Chemical Society.

[32]  Myongsoo Lee,et al.  Induction of supramolecular chirality in self-assembled nanofibers triggered by environmental change , 2011 .

[33]  Feihe Huang,et al.  Synthesis of a pillar[5]arene dimer by co-oligomerization and its complexation with n-octyltrimethyl ammonium hexafluorophosphate , 2011 .

[34]  Ho-Joong Kim,et al.  Responsive nanostructures from aqueous assembly of rigid-flexible block molecules. , 2011, Accounts of chemical research.

[35]  H. Möhwald,et al.  Recent progress in morphology control of supramolecular fullerene assemblies and its applications. , 2010, Chemical Society reviews.

[36]  Xi Zhang,et al.  Supramolecular amphiphiles based on a water-soluble charge-transfer complex: fabrication of ultralong nanofibers with tunable straightness. , 2009, Angewandte Chemie.

[37]  Xi Zhang,et al.  Tuning the Amphiphilicity of Building Blocks: Controlled Self‐Assembly and Disassembly for Functional Supramolecular Materials , 2009 .

[38]  A. Tsivadze,et al.  Supramolecular chemistry of metalloporphyrins. , 2009, Chemical reviews.

[39]  B. Suijkerbuijk,et al.  Merging porphyrins with organometallics: synthesis and applications. , 2008, Angewandte Chemie.

[40]  T. Fukushima,et al.  Conductive one-handed nanocoils by coassembly of hexabenzocoronenes: control of morphology and helical chirality. , 2008, Angewandte Chemie.

[41]  L. Du,et al.  Preparation and Characterization of a Chloroperoxidase-like Catalytic Antibody , 2007, International Journal of Molecular Sciences.

[42]  Eunji Lee,et al.  Two-dimensional assembly of rod amphiphiles into planar networks. , 2007, Journal of the American Chemical Society.

[43]  Daoben Zhu,et al.  Controlled self-assembly behavior of an amphiphilic bisporphyrin-bipyridinium-palladium complex: from multibilayer vesicles to hollow capsules. , 2006, Angewandte Chemie.

[44]  Eunji Lee,et al.  Tubular organization with coiled ribbon from amphiphilic rigid-flexible macrocycle. , 2006, Journal of the American Chemical Society.

[45]  D. Discher,et al.  Self-assembly: Towards precision micelles , 2004, Nature.

[46]  Zhong Lin Wang,et al.  Structure Analysis of Nanowires and Nanobelts by Transmission Electron Microscopy , 2004 .

[47]  M. Wakihara,et al.  A high electrode-reaction rate for high-power-density lithium-ion secondary batteries by the addition of a Lewis acid. , 2004, Angewandte Chemie.

[48]  E. Yashima,et al.  Supramolecular chirality of thermotropic liquid-crystalline folic acid derivatives. , 2004, Angewandte Chemie.

[49]  Chao Li,et al.  Self-assembled spiral nanoarchitecture and supramolecular chirality in Langmuir-Blodgett films of an achiral amphiphilic barbituric acid. , 2004, Journal of the American Chemical Society.

[50]  A. Zettl,et al.  Packing C60 in Boron Nitride Nanotubes , 2003, Science.

[51]  Jing Yuan,et al.  Chiral molecular assemblies from a novel achiral amphiphilic 2-(heptadecyl) naphtha[2,3]imidazole through interfacial coordination. , 2003, Journal of the American Chemical Society.

[52]  H. Gibson,et al.  Cooperative self-assembly of dendrimers via pseudorotaxane formation from a homotritopic guest molecule and complementary monotopic host dendrons. , 2002, Journal of the American Chemical Society.

[53]  S. Förster,et al.  From self-organizing polymers to nanohybrid and biomaterials. , 2002, Angewandte Chemie.

[54]  Barrett E. Eichler,et al.  Synthesis and Characterization of , 2001, Angewandte Chemie.

[55]  R. Jagessar,et al.  Neutral Ligands for Selective Chloride Anion Complexation: (α,α,α,α)-5,10,15,20-Tetrakis(2-(arylurea)phenyl)porphyrins , 1998 .

[56]  J S Moore,et al.  Solvophobically driven folding of nonbiological oligomers. , 1997, Science.

[57]  Martin R. Johnson,et al.  FOUR-ATOM-LINKED CAPPED PORPHYRINS : SYNTHESIS AND CHARACTERIZATION , 1996 .

[58]  G. Fredrickson,et al.  Cylindrical micelles in rigid-flexible diblock copolymers , 1992 .

[59]  C. M. Elliott,et al.  SPECTRAL, ELECTROCHEMICAL AND BASE-BINDING STUDIES OF HETERODINUCLEAR RUTHENIUM-COBALT COMPLEXES OF MESO-α,α,α,α-TETRA(NICOTINAMIDOPHENYL)PORPHINE , 1985 .

[60]  C. M. Elliott,et al.  Spectral, electrochemical and base-binding studies of heterodinuclear ruthenium-cobalt complexes of meso-.alpha.,.alpha.,.alpha.,.alpha.-tetra(nicotinamidophenyl)porphine , 1985 .

[61]  K. Murray,et al.  A MODEL FOR THE CYANIDE FORM OF OXIDIZED CYTOCHROME OXIDASE: AN IRON(III)/COPPER(II) PORPHYRIN COMPLEX DISPLAYING FERROMAGNETIC COUPLING , 1984 .

[62]  C. M. Elliott,et al.  Ruthenium-containing dimetal complexes of meso-tetrakis(o-nicotinamidophenyl)porphyrin , 1982 .

[63]  J. Lindsey Increased yield of a desired isomer by equilibriums displacement on binding to silica gel, applied to meso-tetrakis(o-aminophenyl)porphyrin , 1980 .

[64]  P. E. Clark,et al.  TOWARD SYNTHETIC MODELS FOR CYTOCHROME OXIDASE: A BINUCLEAR IRON(III) PORPHYRIN-COPPER(II) COMPLEX , 1980 .

[65]  L. Mander,et al.  SYNTHETIC MODELS FOR BIS-METALLO ACTIVE SITES. A PORPHYRIN CAPPED BY A TETRAKIS(PYRIDINE) LIGAND SYSTEM , 1978 .

[66]  W. Robinson,et al.  "Picket fence porphyrins." Synthetic models for oxygen binding hemoproteins. , 1975, Journal of the American Chemical Society.

[67]  C. Reed,et al.  A paramagnetic dioxygen complex of iron (II) derived from a "picket fence" porphyrin. Further models for hemoproteins. , 1974, Journal of the American Chemical Society.

[68]  Collman Jp,et al.  A paramagnetic dioxygen complex of iron (II) derived from a "picket fence" porphyrin. Further models for hemoproteins. , 1974 .

[69]  C. Reed,et al.  Reversible oxygen adduct formation in ferrous complexes derived from a picket fence porphyrin. Model for oxymyoglobin , 1973 .

[70]  Feihe Huang,et al.  Macrocyclic amphiphiles. , 2015, Chemical Society reviews.

[71]  Xi Zhang,et al.  Supramolecular amphiphiles. , 2011, Chemical Society reviews.

[72]  Y. Marcus,et al.  Ion pairing. , 2006, Chemical reviews.

[73]  P. Beer,et al.  Spectral and electrochemical anion sensing by a novel 5,10,15,20-tetrakis(R-substituted) porphyrin receptor (R = C6H4NHC(O)C5H4CoC5H5+PF6–) , 1995 .

[74]  C. M. Elliott meso-α,α,α,α-Tetra(o-nicotinamidophenyl)porphyrin: a novel ligand for the preparation of unsymmetrical bis-metal complexes , 1978 .