Coupled Electro-Thermo-Mechanical Finite Element Modeling of the Spark Plasma Sintering Technique

[1]  J. Lobry,et al.  Spark Plasma Sintering: Homogenization of the Compact Temperature Field for Non Conductive Materials , 2015 .

[2]  C. Estournès,et al.  Electro-thermal measurements and finite element method simulations of a spark plasma sintering device , 2013 .

[3]  E. Olevsky,et al.  Spark-plasma sintering efficiency control by inter-particle contact area growth: A viewpoint , 2013 .

[4]  Christopher D. Haines,et al.  Localized Overheating Phenomena and Optimization of Spark-Plasma Sintering Tooling Design , 2013, Materials.

[5]  U. Anselmi-Tamburini,et al.  Parametric investigation of temperature distribution in field activated sintering apparatus , 2013 .

[6]  Christopher D. Haines,et al.  Fundamental Aspects of Spark Plasma Sintering: II. Finite Element Analysis of Scalability , 2012 .

[7]  Christopher D. Haines,et al.  Fundamental Aspects of Spark Plasma Sintering: I. Experimental Analysis of Scalability , 2012 .

[8]  Fu-chi Wang,et al.  Simulation of temperature and stress distributions in functionally graded materials synthesized by a spark plasma sintering process , 2012 .

[9]  A. Molinari,et al.  Modeling of conventional hot compaction and Spark Plasma Sintering based on modified micromechanical models of porous materials , 2012 .

[10]  J. Allen,et al.  Numerical Simulation of the Temperature and Stress Field Evolution Applied to the Field Assisted Sintering Technique , 2012 .

[11]  E. Olevsky,et al.  Densification mechanisms of spark plasma sintering: multi-step pressure dilatometry , 2012, Journal of Materials Science.

[12]  Y. Sakka,et al.  Effects of Pressure Application Method on Transparency of Spark Plasma Sintered Alumina , 2011 .

[13]  Zhaoyao Zhou,et al.  A multi-field coupled FEM model for one-step-forming process of spark plasma sintering considering local densification of powder material , 2011, Journal of Materials Science.

[14]  Zuhair A. Munir,et al.  Electric Current Activation of Sintering: A Review of the Pulsed Electric Current Sintering Process , 2011 .

[15]  Suksun Horpibulsuk,et al.  Modified Structured Cam Clay: A generalised critical state model for destructured, naturally structured and artificially structured clays , 2010 .

[16]  Manfred Martin,et al.  Pressure effects and grain growth kinetics in the consolidation of nanostructured fully stabilized zirconia by pulsed electric current sintering , 2010 .

[17]  Lai-fei Cheng,et al.  FEM analysis of the temperature and stress distribution in spark plasma sintering: Modelling and experimental validation , 2010 .

[18]  U. Anselmi-Tamburini,et al.  Temperature and stress fields evolution during spark plasma sintering processes , 2010 .

[19]  J. Vaunat,et al.  Potentials for the modified Cam-Clay model , 2010 .

[20]  J. Galy,et al.  Temperature Control in Spark Plasma Sintering: An FEM Approach , 2010 .

[21]  Deepa S. Liyanapathirana,et al.  Behaviour of cemented clay simulated via the theoretical framework of the Structured Cam Clay model , 2010 .

[22]  Y. Sakka,et al.  Pressure Effect on the Homogeneity of Spark Plasma‐Sintered Tungsten Carbide Powder , 2009 .

[23]  Y. Sakka,et al.  Electric current activated/assisted sintering (ECAS): a review of patents 1906–2008 , 2009, Science and technology of advanced materials.

[24]  Y. Sakka,et al.  Pressure effects on temperature distribution during spark plasma sintering with graphite sample , 2009 .

[25]  M. Herrmann,et al.  Temperature distribution for electrically conductive and non-conductive materials during Field Assisted Sintering (FAST) , 2009 .

[26]  Bikramjit Basu,et al.  Simulation of thermal and electric field evolution during spark plasma sintering , 2009 .

[27]  Antonio Mario Locci,et al.  Consolidation/synthesis of materials by electric current activated/assisted sintering , 2009 .

[28]  Y. Sakka,et al.  Moving finite-element mesh model for aiding spark plasma sintering in current control mode of pure ultrafine WC powder , 2009, Journal of Materials Science.

[29]  G. Antou,et al.  Spark plasma sintering of zirconium carbide and oxycarbide: Finite element modeling of current density, temperature, and stress distributions , 2009 .

[30]  B. McWilliams,et al.  Multi-phenomena simulation of electric field assisted sintering , 2008 .

[31]  Beatriz García,et al.  Optimisation procedure for choosing Cam clay parameters , 2007 .

[32]  Javier E. Garay,et al.  Finite element modeling of electric current-activated sintering: The effect of coupled electrical potential, temperature and stress , 2007 .

[33]  T. Noda,et al.  Relation between microstructure, properties and spark plasma sintering (SPS) parameters of pure ultrafine WC powder , 2007 .

[34]  Z. A. Munir,et al.  The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method , 2006 .

[35]  K. Vanmeensel,et al.  Modelling of the temperature distribution during field assisted sintering , 2005 .

[36]  J. Groza,et al.  Temperature evolution during field activated sintering , 2004 .

[37]  Norman A. Fleck,et al.  YIELD BEHAVIOUR OF COLD COMPACTED COMPOSITE POWDERS , 2000 .

[38]  H. B. Manbeck,et al.  Triaxial testing of dry, cohesive powder and its application to a modified Cam-clay constitutive model , 1994 .