A genetic algorithm for MRF-based segmentation of multi-spectral textured images

Abstract A segmentation approach based on a Markov random field (MRF) model is an iterative algorithm; it needs many iteration steps to approximate a near optimal solution or gets a non-suitable solution with a few iteration steps. In this paper, we use a genetic algorithm (GA) to improve an unsupervised MRF-based segmentation approach for multi-spectral textured images. The proposed hybrid approach has the advantage that combines the fast convergence of the MRF-based iterative algorithm and the powerful global exploration of the GA. In experiments, synthesized color textured images and multi-spectral remote-sensing images were processed by the proposed approach to evaluate the segmentation performance. The experimental results reveal that the proposed approach really improves the MRF-based segmentation for the multi-spectral textured images.

[1]  Tatsuya Yamazaki,et al.  Image classification using spectral and spatial information based on MRF models , 1995, IEEE Trans. Image Process..

[2]  James E. Baker,et al.  Reducing Bias and Inefficienry in the Selection Algorithm , 1987, ICGA.

[3]  John A. Gunnels,et al.  Genetic algorithms and simulated annealing for gene mapping , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[4]  Anil K. Jain,et al.  MRF model-based algorithms for image segmentation , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[5]  Charles A. Bouman,et al.  Multiple Resolution Segmentation of Textured Images , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[7]  Raúl Hector Gallard,et al.  Genetic algorithms + Data structure = Evolution programs , Zbigniew Michalewicz , 1999 .

[8]  Philippe Andrey,et al.  Unsupervised Segmentation of Markov Random Field Modeled Textured Images Using Selectionist Relaxation , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Thomas S. Huang,et al.  Image processing , 1971 .

[10]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[11]  Anil K. Jain,et al.  Multisource classification of remotely sensed data: fusion of Landsat TM and SAR images , 1994, IEEE Trans. Geosci. Remote. Sens..

[12]  Andrew P. Witkin,et al.  Scale-space filtering: A new approach to multi-scale description , 1984, ICASSP.

[13]  Anil K. Jain,et al.  Markov random fields : theory and application , 1993 .

[14]  Cheng-Yan Kao,et al.  Applying the genetic approach to simulated annealing in solving some NP-hard problems , 1993, IEEE Trans. Syst. Man Cybern..

[15]  Yee-Hong Yang,et al.  Multiresolution Color Image Segmentation , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[17]  Glenn Healey,et al.  Markov Random Field Models for Unsupervised Segmentation of Textured Color Images , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Tim J. Dennis,et al.  Simulated annealing and iterated conditional modes with selective and confidence enhanced update schemes , 1992, [1992] Proceedings Fifth Annual IEEE Symposium on Computer-Based Medical Systems.

[19]  Stan Z. Li,et al.  Markov Random Field Modeling in Computer Vision , 1995, Computer Science Workbench.

[20]  Mark J. Carlotto,et al.  Histogram Analysis Using a Scale-Space Approach , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Sankar K. Pal,et al.  A review on image segmentation techniques , 1993, Pattern Recognit..

[22]  Mehmet Celenk,et al.  A color clustering technique for image segmentation , 1990, Comput. Vis. Graph. Image Process..

[23]  Chaur-Chin Chen,et al.  Color images' segmentation using scale space filter and markov random field , 1992, Pattern Recognit..

[24]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[25]  Anil K. Jain,et al.  A Markov random field model for classification of multisource satellite imagery , 1996, IEEE Trans. Geosci. Remote. Sens..

[26]  Robert M. Haralick,et al.  Multispectral image context classification using stochastic relaxation , 1990, IEEE Trans. Syst. Man Cybern..

[27]  Morris Goldberg,et al.  Hierarchy in Picture Segmentation: A Stepwise Optimization Approach , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Rama Chellappa,et al.  Unsupervised Texture Segmentation Using Markov Random Field Models , 1991, IEEE Trans. Pattern Anal. Mach. Intell..