Recyclable Biophenolic Nanospheres for Sustainable and Durable Multifunctional Applications in Thermosets

[1]  Hai-Bo Zhao,et al.  Thermo‐Responsive Self‐Ceramifiable Robust Aerogel with Exceptional Strengthening and Thermal Insulating Performance at Ultrahigh Temperatures , 2023, Advanced Functional Materials.

[2]  Lei Song,et al.  An Individualized Core–Shell Architecture Derived from Covalent Triazine Frameworks: Toward Enhancing the Flame Retardancy, Smoke Release Suppression, and Toughness of Bismaleimide Resin , 2023, ACS Materials Letters.

[3]  Xiu-li Wang,et al.  Fully recyclable multifunctional adhesive with high durability, transparency, flame retardancy, and harsh-environment resistance , 2022, Science advances.

[4]  Mingjun Chen,et al.  Molecular-Micron Multiscale Toughening and Flame Retarding for Polyurethane Foams , 2022, Chemical Engineering Journal.

[5]  Hong Ye,et al.  Economical Architected Foamy Aerogel Coating for Energy Conservation and Flame Resistance , 2022, ACS Materials Letters.

[6]  M. Tavakoli,et al.  3R Electronics: Scalable Fabrication of Resilient, Repairable, and Recyclable Soft‐Matter Electronics , 2022, Advanced materials.

[7]  R. Ritchie,et al.  Conductive Ink with Circular Life Cycle for Printed Electronics , 2022, Advanced materials.

[8]  Hao Wang,et al.  Degradable, Recyclable, Water-Resistant, and Eco-Friendly Poly(vinyl alcohol)-Based Supramolecular Plastics , 2022, ACS Materials Letters.

[9]  Hai-Bo Zhao,et al.  An Effective Green Porous Structural Adhesive for Thermal Insulating, Flame-Retardant, and Smoke-Suppressant Expandable Polystyrene Foam , 2022, Engineering.

[10]  Gaigai Duan,et al.  Fabrication of Functional Polycatechol Nanoparticles. , 2022, ACS macro letters.

[11]  O. Bakr,et al.  Self-Assembly and Regrowth of Metal Halide Perovskite Nanocrystals for Optoelectronic Applications , 2022, Accounts of chemical research.

[12]  D. Zhao,et al.  Kinetics-Controlled Super-Assembly of Asymmetric Porous and Hollow Carbon Nanoparticles as Light-Sensitive Smart Nanovehicles. , 2022, Journal of the American Chemical Society.

[13]  Hai-Bo Zhao,et al.  Advanced Flame‐Retardant Methods for Polymeric Materials , 2021, Advanced materials.

[14]  Dayong Yang,et al.  Sustainable Bioplastic Made from Biomass DNA and Ionomers. , 2021, Journal of the American Chemical Society.

[15]  J. Lehn,et al.  Constitutional Dynamic Selection at Low Reynolds Number in a Triple Dynamic System: Covalent Dynamic Adaptation Driven by Double Supramolecular Self-Assembly. , 2021, Journal of the American Chemical Society.

[16]  Xi Zhang,et al.  Multi-recyclable Shape Memory Supramolecular Polyurea with Long Cycle Life and Superior Stability , 2021 .

[17]  S. Mecking,et al.  Closed-loop recycling of polyethylene-like materials , 2021, Nature.

[18]  Hao Wang,et al.  Flame retardant polymeric nanocomposites through the combination of nanomaterials and conventional flame retardants , 2020 .

[19]  Xi Zhang,et al.  Self-Degradable Supramolecular Photosensitizer with High Photodynamic Therapeutic Efficiency and Improved Safety. , 2020, Angewandte Chemie.

[20]  Joseph J. Richardson,et al.  Particle engineering enabled by polyphenol-mediated supramolecular networks , 2020, Nature Communications.

[21]  Changsheng Zhao,et al.  Metal‐Phenolic Networks Nanoplatform to Mimic Antioxidant Defense System for Broad‐Spectrum Radical Eliminating and Endotoxemia Treatment , 2020, Advanced Functional Materials.

[22]  C. Tung,et al.  Monochromophore-Based Phosphorescence and Fluorescence from Pure Organic Assemblies for Ratiometric Hypoxia Detection. , 2020, Angewandte Chemie.

[23]  Joseph J. Richardson,et al.  Polyphenol-Mediated Assembly for Particle Engineering. , 2020, Accounts of chemical research.

[24]  Yanli Zhao,et al.  Cross-Linked Polyphosphazene Hollow Nanosphere Derived N/P-Doped Porous Carbon with Single Nonprecious Metal Atoms for Oxygen Reduction Reaction. , 2020, Angewandte Chemie.

[25]  Jing Ren,et al.  Flame-Retardant and Sustainable Silk Ionotronic Skin for Fire Alarm Systems , 2020 .

[26]  G. Coates,et al.  Chemical recycling to monomer for an ideal, circular polymer economy , 2020, Nature Reviews Materials.

[27]  Bruce L. Tai,et al.  Self-Extinguishing Additive Manufacturing Filament from a Unique Combination of Polylactic Acid and a Polyelectrolyte Complex , 2020 .

[28]  M. Miao,et al.  Recyclable thermoset hyperbranched polymers containing reversible hexahydro-s-triazine , 2019, Nature Sustainability.

[29]  Shuhong Yu,et al.  Recycling Valuable Elements from the Chemical Synthesis Process of Nanomaterials: A Sustainable View , 2019, ACS Materials Letters.

[30]  B. Helms,et al.  Closed-loop recycling of plastics enabled by dynamic covalent diketoenamine bonds , 2019, Nature Chemistry.

[31]  A. Stec,et al.  Fire behaviour of modern façade materials - Understanding the Grenfell Tower fire. , 2019, Journal of hazardous materials.

[32]  Bin Liu,et al.  Solvent Magic for Organic Particles. , 2019, ACS nano.

[33]  Lijun Qian,et al.  Toughening Effect and Flame-Retardant Behaviors of Phosphaphenanthrene/Phenylsiloxane Bigroup Macromolecules in Epoxy Thermoset , 2018, Macromolecules.

[34]  Haeshin Lee,et al.  Progressive fuzzy cation-π assembly of biological catecholamines , 2018, Science Advances.

[35]  T. Hyeon,et al.  Synthesis and Biomedical Applications of Multifunctional Nanoparticles , 2018, Advanced materials.

[36]  D. Zhao,et al.  Sol-Gel Synthesis of Metal-Phenolic Coordination Spheres and Their Derived Carbon Composites. , 2018, Angewandte Chemie.

[37]  Bernhard Schartel,et al.  Molecular Firefighting—How Modern Phosphorus Chemistry Can Help Solve the Challenge of Flame Retardancy , 2018, Angewandte Chemie.

[38]  Jianliang Xiao,et al.  Rehealable, fully recyclable, and malleable electronic skin enabled by dynamic covalent thermoset nanocomposite , 2018, Science Advances.

[39]  F. Wurm,et al.  Reversible Self-Assembly of Degradable Polymersomes with Upper Critical Solution Temperature in Water. , 2017, Journal of the American Chemical Society.

[40]  T. Lorenz,et al.  Valuable Metals-Recovery Processes, Current Trends, and Recycling Strategies. , 2017, Angewandte Chemie.

[41]  Daniel M. Packwood,et al.  Chemical and entropic control on the molecular self-assembly process , 2017, Nature Communications.

[42]  Liping Zhao,et al.  Carbon nanotube bridged cerium phenylphosphonate hybrids, fabrication and their effects on the thermal stability and flame retardancy of the HDPE/BFR composite , 2014 .

[43]  Xudong Li,et al.  Biocompatible, functional spheres based on oxidative coupling assembly of green tea polyphenols. , 2013, Journal of the American Chemical Society.

[44]  N. Russo,et al.  The molecular basis of working mechanism of natural polyphenolic antioxidants , 2011 .

[45]  Céline Douat-Casassus,et al.  Plant polyphenols: chemical properties, biological activities, and synthesis. , 2011, Angewandte Chemie.