Infrared electric field sampled frequency comb spectroscopy

Generation and detection of single-cycle mid-infrared waveforms enables broadband, high-resolution spectroscopy across 3 to 27 μm. Probing matter with light in the mid-infrared provides unique insight into molecular composition, structure, and function with high sensitivity. However, laser spectroscopy in this spectral region lacks the broadband or tunable light sources and efficient detectors available in the visible or near-infrared. We overcome these challenges with an approach that unites a compact source of phase-stable, single-cycle, mid-infrared pulses with room temperature electric field–resolved detection at video rates. The ultrashort pulses correspond to laser frequency combs that span 3 to 27 μm (370 to 3333 cm−1), and are measured with dynamic range of >106 and spectral resolution as high as 0.003 cm−1. We highlight the brightness and coherence of our apparatus with gas-, liquid-, and solid-phase spectroscopy that extends over spectral bandwidths comparable to thermal or infrared synchrotron sources. This unique combination enables powerful avenues for rapid detection of biological, chemical, and physical properties of matter with molecular specificity.

[1]  N. Chukanov,et al.  Infrared Spectroscopy of Minerals and Related Compounds , 2016 .

[2]  A. Berg,et al.  Ammonia sensors and their applications - a review , 2005 .

[3]  H. Rabitz,et al.  Control of quantum phenomena: past, present and future , 2009, 0912.5121.

[4]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[5]  John E. Schiel,et al.  State-of-the-Art and Emerging Technologies for Therapeutic Monoclonal Antibody Characterization Volume 2. Biopharmaceutical Characterization: The NISTmAb Case Study , 2015 .

[6]  Miltos D. Grammatikakis,et al.  State-of-the-Art and Challenges , 2018, Distributed Real-Time Architecture for Mixed-Criticality Systems.

[7]  J. A. Pérez-Hernández,et al.  Attosecond physics at the nanoscale , 2016, Reports on progress in physics. Physical Society.

[9]  M. Triki,et al.  Progress towards an accurate determination of the Boltzmann constant by Doppler spectroscopy , 2010, 1012.4181.

[10]  Keeyoon Sung,et al.  Measurements of line intensities and half-widths in the 10-μm bands of 14NH3 , 2004 .

[11]  C Janke,et al.  Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling. , 2007, The Review of scientific instruments.

[12]  Luca Palchetti,et al.  The Far‐infrared Earth , 2008 .

[13]  H. Bechtel,et al.  Infrared vibrational nanocrystallography and nanoimaging , 2016, Science Advances.

[14]  I. Coddington,et al.  Dual-comb spectroscopy. , 2016, Optica.

[15]  S. Hunsche,et al.  Detectors and sources for ultrabroadband electro-optic sampling: Experiment and theory , 1999 .

[16]  Alfred Leitenstorfer,et al.  Field-resolved detection of phase-locked infrared transients from a compact Er:fiber system tunable between 55 and 107 THz , 2008 .

[17]  James Allan,et al.  The molecular identification of organic compounds in the atmosphere: state of the art and challenges. , 2015, Chemical reviews.

[18]  D. Brida,et al.  Sub-cycle optical phase control of nanotunnelling in the single-electron regime , 2016, Nature Photonics.

[19]  H. Bechtel,et al.  Nanoimaging and Control of Molecular Vibrations through Electromagnetically Induced Scattering Reaching the Strong Coupling Regime , 2018, ACS photonics.

[20]  Hugo Pires,et al.  Ultrashort pulse generation in the mid-IR , 2015 .

[21]  Hans A Bechtel,et al.  Ultrabroadband infrared nanospectroscopic imaging , 2014, Proceedings of the National Academy of Sciences.

[22]  Da-Wen Sun Infrared spectroscopy for food quality analysis and control , 2009 .

[23]  E. R. Polovtseva,et al.  The HITRAN2012 molecular spectroscopic database , 2013 .

[24]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[25]  A. Barth Infrared spectroscopy of proteins. , 2007, Biochimica et biophysica acta.

[26]  Nathan R Newbury,et al.  Gas-phase broadband spectroscopy using active sources: progress, status, and applications. , 2017, Journal of the Optical Society of America. B, Optical physics.

[27]  S. Maret,et al.  On the robustness of the ammonia thermometer , 2009, 0906.4468.

[28]  Rohit Bhargava,et al.  Using Fourier transform IR spectroscopy to analyze biological materials , 2014, Nature Protocols.

[29]  G. Burkard,et al.  Direct sampling of electric-field vacuum fluctuations , 2015, Science.

[30]  Aritra Mandal,et al.  Ultrafast 2D IR spectroscopy of the excess proton in liquid water , 2015, Science.

[31]  Young‐Jin Kim,et al.  Fourier-transform spectroscopy using an Er-doped fiber femtosecond laser by sweeping the pulse repetition rate , 2015, Scientific Reports.

[32]  Peter Schwerdtfeger,et al.  Progress toward the first observation of parity violation in chiral molecules by high-resolution laser spectroscopy. , 2010, Chirality.

[33]  Scott A. Diddams,et al.  Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb , 2007, Nature.

[34]  Femtosecond measurements of electric fields: from classical amplitudes to quantum fluctuations , 2017 .

[35]  Jorge Lima,et al.  Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation , 2011, Nature.

[36]  Robert R. Gamache,et al.  Lineshape parameters for water vapor in the 3.2–17.76 μm region for atmospheric applications , 2005 .

[37]  Mattias Beck,et al.  Quantum Cascade Laser Frequency Combs , 2015, 1510.09075.

[38]  S. Hewitt,et al.  Infrared spectroscopic imaging for histopathologic recognition , 2005, Nature Biotechnology.

[39]  Claudio Sorio,et al.  Infrared spectroscopy and microscopy in cancer research and diagnosis. , 2012, American journal of cancer research.

[40]  R. Huber,et al.  Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations , 2014 .

[41]  Andrew J. Metcalf,et al.  Ultrafast electro-optic light with subcycle control , 2017, Science.

[42]  Jun Ye,et al.  Cold molecules: Progress in quantum engineering of chemistry and quantum matter , 2017, Science.

[43]  Martin Quack,et al.  High-resolution spectroscopic studies and theory of parity violation in chiral molecules. , 2008, Annual review of physical chemistry.

[44]  Mattias Beck,et al.  Room-temperature nine-µm-wavelength photodetectors and GHz-frequency heterodyne receivers , 2018, Nature.

[45]  D. Holdstock Past, present--and future? , 2005, Medicine, conflict, and survival.

[46]  Lyubov V. Titova,et al.  An ultrafast terahertz scanning tunnelling microscope , 2013, Nature Photonics.

[47]  Thomas K. Allison,et al.  Molecular fingerprinting with bright, broadband infrared frequency combs , 2018 .

[48]  Theodor W. Hänsch,et al.  Coherent Raman spectro-imaging with laser frequency combs , 2013, Nature.

[49]  Kevin F. Lee,et al.  Rovibrational quantum state resolution of the C60 fullerene , 2018, Science.

[50]  J. Bell,et al.  Experiment and Theory , 1968 .

[51]  J. E. Katon Infrared microspectroscopy. A review of fundamentals and applications , 1996 .

[52]  Jun Ye,et al.  Mid-Infrared Time-Resolved Frequency Comb Spectroscopy of Transient Free Radicals. , 2014, The journal of physical chemistry letters.

[53]  Dusan Stulik,et al.  Infrared Spectroscopy in Conservation Science , 2000 .

[54]  Ferenc Krausz,et al.  High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate , 2015, Nature Photonics.

[55]  Daniel B. Holland,et al.  Decade-spanning high-precision terahertz frequency comb. , 2015, Physical review letters.

[56]  Subcycle quantum electrodynamics , 2016, Nature.

[57]  George C. Schatz,et al.  The journal of physical chemistry letters , 2009 .

[58]  Xi-Cheng Zhang,et al.  Free-space electro-optics sampling of mid-infrared pulses , 1997 .

[59]  M. Vainio,et al.  Mid-infrared optical parametric oscillators and frequency combs for molecular spectroscopy. , 2016, Physical chemistry chemical physics : PCCP.

[60]  Jens Biegert,et al.  Strong-field physics with mid-IR fields , 2015, 1506.03636.

[61]  Esther Baumann,et al.  High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 μm , 2017, 1709.07105.

[62]  Takao Fuji,et al.  Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers. , 2002, Physical review letters.

[63]  S. Diddams Infrared Electric-Field Sampled Frequency Comb Spectroscopy , 2019, 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).

[64]  N. Demirdöven,et al.  Vibrational coherence transfer characterized with Fourier-transform 2D IR spectroscopy. , 2004, Journal of Chemical Physics.

[65]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[66]  F. Keilmann,et al.  Near-field microscopy by elastic light scattering from a tip , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[67]  Konstantin L. Vodopyanov,et al.  Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs , 2018 .

[68]  Alexandre Dazzi,et al.  AFM-IR: Technology and Applications in Nanoscale Infrared Spectroscopy and Chemical Imaging. , 2017, Chemical reviews.

[69]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[70]  N. Clarke,et al.  FTIR-based spectroscopic analysis in the identification of clinically aggressive prostate cancer , 2008, British Journal of Cancer.

[71]  B. Stuart Infrared Spectroscopy , 2004, Analytical Techniques in Forensic Science.

[72]  Jstor Philosophical Transactions of the Royal Society of London (A) , 2011 .